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ABSTRACT 

We have developed a mathematical model for capillary rise of magnetohydrodynamic fluids. The liquid starts 

to imbibe because of capillary suction in an undeformed and initially dry sponge-like porous material. The 

driving force in our model is a pressure gradient across the evolving porous material that induces a stress 

gradient which in turn causes deformation that is characterized by a variable solid fraction. The problem is 

formulated as a non–linear moving boundary problem which we solve using the method of lines approach after 

transforming to a fixed computational domain. The summary of our finding includes a notable reduction in 
capillary rise and a decrease in solid deformation due to magnetic effects. 
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1. INTRODUCTION 

The history of studying the phenomena of capillary 

rise goes back to the pioneering work of Washburn 

(1921) where he concluded that the volume of the 

liquid that penetrates into the porous material in a 

time t is proportional to .t  Later on, other authors 

including Delker et al. (1996), Lago and Araujo 

(2001), Zhmud et al. (2000), Cai et al. (2014) and 

Cai et al. (2010) contributed in this area to further 

understand the capillary rise phenomena via different 

mathematical models along with experiments. All of 

these efforts well describe the mechanism of 

capillary rise into rigid porous material. However in 

many industrial as well as biological processes, the 

porous material is not rigid anymore, instead they 

deform when liquid passes through them. These 

materials exist in biomechanics, magma mechanics, 

soil science, infiltration, paper printing and textile 

engineering. 

The history of studying the deformation of porous 

materials coupled with fluid flow goes back to 

Terzaghi (1925). It was further extended by Biot 

(1955) Biot (1956) to study soil consolidation. To 

understand fluid flow through deformable porous 

material as well as the deformation in porous media, 

mixture theory approach was introduced by Atkin 

and Crain (1976) and Bowen Bowen (1980). Later 

on, mixture theory was also used in studying various 

biological applications such as articular cartilage Lai 

and Mow (1980), Holmes (1983), Holmes (1984), 

Holmes (1985), Holmes (1986), Holmes and Mow 

(1990), Hou et al. (1989), arterial tissue Kenyon 

(1976), Kenyon (1987), Barry et al.(1991), Barry and 

Aldis (1992), and skin Oomens et al. (1987). 

Similarly, many industrial applications such as paper 

and inkjet printing, textile engineering, and dyeing of 

colored fabrics that deforms when the fluid motions 

through them has been studied using mixture theory. 

In this study our aim is to extend the mixture theory 

modeling to include magnetic property of electrically 

conducting fluids. 

Our particular interest here is to develop a 

mathematical model to examine one-dimensional 

fluid flow through a deformable sponge like porous 

material. Recently Sommer and Mortensen (1996) 

developed a mathematical model using mixture 

theory to examine a forced unidirectional infiltration 

in an initially dry deformable porous material where 

a constant pressure drives the fluid flow in the porous 

material. On similar lines, Preziosi et al. (1996) 

presented a mathematical model for unidirectional 

infiltration of an incompressible liquid into a 

deformable porous material where the porous 

material is allowed to deform and relax when fluid 

flows through it. In view of ink–jet printing 

application, Anderson (2005) developed a 

mathematical model for the imbibition of liquid 

droplet on a deformable porous substrate. In the 

absence of gravitational effects, swelling, swelling 

relaxation, and shrinking of a porous material was 

reported in this work for particular choices of 
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permeability function and stress function. 

The preceding short literature review summarizes 

two important ingredients (i.e mixture theory and 

magnetohydrodynamics (MHD) fluid) that serve as 

important building blocks for current study. Our 

work is natural extension of Siddique et al. (2009), 

where they studied the capillary rise of liquid into 

deformable porous material by using mixture theory 

to account for material deformation. Their 

predictions for initial times are in good agreement 

with Washburn model of capillary rise but deviate 

from this trend for longer times. Later on Siddique 

and Anderson (2011) developed a mathematical 

model for capillary rise of non–Newtonian liquid 

into deformable porous material. They reported that 

capillary rise of liquid and deformation in porous 

material depends on power law index n and power–

law consistency index * . 

Magnetohydrodynamics (MHD) fluids are 

electrically conducting fluids that occur in nature as 

well as in laboratory settings. The examples of these 

fluids are salt water, plasma, liquid metals, and 

electrolytes. An important fact in studying MHD is 

that magnetic fields can induce currents in a moving 

conductive fluid, which in turn creates forces on the 

fluid and also changes the magnetic field itself. In 

MHD mathematical modeling, a combination of the 

Navier-Stokes equations and Maxwell’s equations of 

electromagnetism are coupled together to analyze the 

influence of force and changes in magnetic field. In 

this regard first effort to the best of authors 

knowledge where magnetic fields is combined with 

mixture is by Eldabe et al. (2011). In this study, they 

extended Barry et al. (1991) work by presenting a 

mathematical model for unsteady flow of a 

Newtonian fluid in a deformable channel walls. 

Our aim in current study is to develop a mathematical 

model for capillary rise of MHD liquid into 

deformable porous material. Our model is based on 

governing equations used by many authors in their 

studies Sommer and Mortensen (1996), Preziosi et 

al. (1996), Barry et al. (1991), Barry and Aldis 

(1992), Anderson (2005) and Siddique et al.(2009). 

We are interested in analyzing effects of magnetic 

fields by using mixture theory to examine capillary 

rise phenomena in deformable porous material. 

Generally speaking our model is analog of the 

models of Washburn (1921) and Anderson (2005). 

The model adds significant new results about the 

capillary rise of MHD fluids into deformable porous 

materials. We believe that these results will impact 

the understanding of capillary rise dynamics in the 

deformable porous materials that are critically 

important in many industrial settings. The 

organization of our article is as follows: section 2 

describes our mathematical model, section 3 reports 

the results of our experiments while section 4 draws 

the conclusions from these results. 

2. MATHEMATICAL MODELING 

Figure (1) shows the basic geometrical description of 

capillary rise of an incompressible 

magnetohydrodynamics (MHD) liquid into a 

spongelike material. At time t = 0, the interface of 

liquid and deformable porous material is represented 

by z = 0. We assume that the imbibition of liquid 

begins from an infinite bath of liquid whose upper 

surface is open to the atmospheric pressure which 

means p = AP  at z = 0 for all times. When t > 0, the 

imbibition of MHD liquid into an initially dry 

deformable porous material starts due to ability of 

suction in the pore space of porous spongelike 

material with the assumption that cP < 0, which 

results in deformation of the porous material. This 

process of imbibition deforms the porous material 

that eventually forms two interfaces. We identify 

these interfaces as solid interface denoted by z = 

( )sh t  and liquid interface denoted by z = ( )lh t  as 

shown in Fig. (1). 

 

 
Fig. 1. This figure shows the one dimensional 

capillary rise configuration. 

 

Incorporating the above assumptions leads us to the 

unknowns that are in the wet material and the 

boundary positions sh  and lh . The resulting 

variables of interest in the wet region are those of 

solid fraction , the vertical velocity component of 

the liquid phase lu , the vertical velocity component 

of solid phase su , the liquid pressure p and the solid 

stress σ where σ = σ(I). Below we write down system 

of equations for the one dimensional deformation of 

spongelike material (see Appendix for details) 

( ) 0,su
t z




 
 

 
                                                      (1) 

 (1 ) 0,lu
t z




 
  

 
                                             (2) 

2
0 0
2

( )( )

(1 ) (1 )
l s s

K BK p
u u u

z

 

   


   

  
                     (3) 

0 ,
p

z z

 
  

 
                                                         (4) 

where equation (1) and (2) are the mass balance 

equations for solid and liquid phases respectively and 

equations (3) and (4) are derived from solid and 

liquid momentum balances [see Preziosi et al.(1996), 

Anderson (2005) for details]. In this set of equations 

µ is the dynamics viscosity, ( )K   is the 

permeability and σs is the solid stress. It is important 
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to note that stress is a function of solid volume 

fraction ( )s s    i.e. equation (4) becomes 

/ ( ) / .sp z z        The other quantities su  

fluid velocity, us solid velocity,   solid volume 

fraction, and p is the pressure. The above set of 

equations are consistent with one dimensional 

models examined by Siddique et al. (2009), Preziosi 

et al. (1996) and Barry et al. (1991), Barry and Aldis 

(1992). Note that our new contribution is inclusion 

of uniform magnetic flux 0B  relative to fluid 

imbibition in the deformable porous sponge and 0  

represents the electric conductivity. Below we will 

examine in detail solutions of these equations and 

corresponding boundary conditions in order to assess 

the effect of uniform magnetic flux on the flow and 

deformation. In order to obtain a single partial 

differential equation (PDE) for solid volume fraction 

 , we follow the procedure used in Siddique et al. 

(2009), Anderson (2005) to obtain  

(1 )
( )

1

(1 ) ( ) ( )
                 

1

C t
t z

K

z z

  

 

     

 

   
  

    

   
  
   

               (5) 

where C(t) is constant of integration and 
2

0 0( ( ) ) /K B     The constant of integration 

C(t) can be determined by subtracting equation (2) 

from equation (1) and integrating with respect to z to 

get 

(1 ) ( ).s lu u C t                                                (6) 

 

Combining equation (6) with equation (3) gives 

 ( )1 1
( )

1 1
s

K
u C t

z

    

    

   
  

     
  (7) 

( ) (1 ) ( ) ( )
1

(1 ) 1 1
l

C t K
u

z

      

     

    
     

        

 (8) 

In all of the above equations if we set α = 0, we obtain 

the system of equation used in Anderson (2005). 

Before we derive the boundary conditions we will 

determine C(t) by using the same argument as in (see 

Preziosi et al. (1996) and Anderson (2005) for 

details) in combination with equation (7) gives the 

following formula for C(t) 

  

 
0

2
0 0

1 1 ( ) ( )
( )

α (1 )

K
C t

z

     

   

   


  
         (9) 

where φ0 represents the uniform solid volume 

fraction of dry rigid porous material. The process of 

imbibition forms liquid–wet material interface 

( )sz h t and wet material–dry material interface 

( )lz h t .The boundary conditions at ( )sz h t are  

( , ) ,    ( , ) ,    ( , ) 0(10)s s s A s

h
u h t p h t p h t

t
  

  


(10) 

and boundary conditions at ( )lz h t are 

( , ) ,    ( , ) ,s s l A c

h
u h t p h t p p

t

 
  


                       (11) 

where pc is the constant capillary pressure and pA is 

atmospheric pressure. Equation (5) along with 

equation (6) and boundary conditions in (10)–(11) 

forms a closed system on a moving domain 

s lh z h  . There are many choices that authors 

have employed to predict physical of their models for 

example Sommer and Mortensen (1996), Preziosi et 

al. (1996) but we follow Anderson (2005)–Siddique 

et al. (2009) and Siddique and Anderson (2011) for 

the choices of ( )K   and ( )  . These choices serve 

dual purpose; it simplifies the set of equation in a 

great deal and also physically consistent with 

realistic trends of capillary rise phenomena under 

study 

0( ) ,     ( ) ( ).r

K
K m    


                                (12) 

The permeability function in (12) is inversely 

proportional to the solid fraction where K0,m > 0 and 

 ( ) 0s m      and 2
0 0 0( ) /M K B   . 

2.1   Nondimensionalization: 

The following set of dimensionless quantities are 

used to nondimensionalize the set of equations (5), 

(6) ,(10) and (11) along with transformation that 

helps to transform the problem from moving domain 

s lh z h  to a fixed domain 0 ≤ z ≤ 1. The resulting 

PDE along with appropriate boundary conditions 

after dropping the prime notation is given as 

( )
,      ,     ( ) ,

( ) ( )

                               ( ) ,    

s s
s

l s

l
s

z h t ht
z t h t

h t h t T H
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along with boundary conditions 
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 

 

 
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2

1

1

1 1

1
          

(1 )

l

l s z

C t Mdh

dt M

M h h z

 

  

 
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  
  

   
 

  
 
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Note that introducing non-dimensional parameters 

yield ordinary differential equations for interface 

positions. These boundary conditions can be 

obtained by equating equations (7) with (10) and (8) 

with (11) and 

0
2

10 0

(1 )(1 ) 1
( )

( ) (1 ) l s z

C t
h h zM

  

    

  
 

   
   (17) 

The boundary conditions for solid volume fraction 

are derived from zero stress conditions and stress 

equilibrium conditions 

*   at    and    z = 0,    and        at     =1r l z    

(18) 

where * /l cp m  and the initial conditions for the 

interface positions are given as follows 

( 0) 0,     and     ( 0) 0.l sh t h t                        (19) 

After setting magnetic parameter M = 0 in (14)–(17), 

we obtain system of equations in the absence of 

gravity given in Siddique et al. (2009) and for 

Newtonian case of Siddique and Anderson (2011) 

when we set power law index n = 1 in the absence of 

gravity effect. Note that for the magneto 

hydrodynamics (MHD), the similarity solution do 

not exist and we have to explore the other possible 

ways to get the solution. In the following section we 

present the solution procedure. 

 

 
Fig. 2. This figure shows the evolution of the 

interface positions sh  and lh  for different values 

of Magnetic parameter M. We have used

0.2,  0.1,l r    and 0 0.33   

 

2.2   Numerical Solution 

The system of equations (14)–(17) does not admit 

similarity solutions as was the case for non–MHD 

Newtonian case Anderson (2005). In order to obtain 

the numerical solution we come across a singularity 

at t = 0, which we deal by using the similarity 

solution obtained in Anderson (2005), for Newtonian 

case as an initial condition for It t where It  is 

initial time that we chose to be small enough so that 

our numerical solution is independent of any further 

reduction in It  . For details on how to obtain the 

similarity solution, (see Anderson (2005) for details). 

The similar procedure was followed by Siddique et 

al. (2009) where they used the similarity solution 

calculated by Anderson (2005) as an initial condition 

for non-zero gravity case for Newtonian fluids. For 

the case of power law fluid Siddique and Anderson 

(2011) obtain similarity solution numerically for 

zero gravity case. This similarity solution is then 

used as an initial condition for non–zero gravity case 

to avoid singularity. In our study we use methods of 

lines along with second order finite difference 

scheme in space to convert the PDEs (14) into a 

system of ODEs. These ODEs along with equations 

(15) and (16) are solved numerically using Matlab’s 

ode15s solver. 

3. RESULTS 

Figure (2) shows the capillary rise and deformation 

dynamics for various values of M. In case of no 

magnetic effects ( )sh t  evolves downward and ( )lh t  

evolves upward following a square root in time 

dynamics. This solution was first identified by 

Anderson (2005), which was later confirmed in 

Siddique et al. (2009) and Siddique and Anderson 

(2011). Interestingly, the ( )lh t  and ( )sh t  for 

magnetohydrodynamics (MHD) fluids evolve more 

slowly when compared to M = 0 case. The process 

of evolution for ( )sh t is even slower than ( )lh t . In 

other words, for magnetohydrodynamic fluids both 

( )lh t and ( )sh t  curves follow a dynamics that may 

still be proportional to t but with different 

constant. This trend of evolution is different than 

classical prediction of Washburn (1921), Lago and 

Araujo (2001) and Zhmud et al. (2000) for capillary 

rise in rigid porous material and for deformable 

porous material Siddique et al. (2009) and Siddique 

and Anderson (2011). 

Figure (3) shows the plot of permeability as a 

function of space. Note that there are many choices 

that have been used by different researchers for 

permeability of porous material and the summary of 

the list of permeability function can be found in 

Anderson and Siddique (2012). This plot represents 

the choice of permeability function that have been 

used in this study. The permeability function 

represents more non–linear dynamics as we move 

from the absence of magnetohydrodynamics fluid M 

= 0 case to magnetohydrodynamic M ≠ 0 case. Note 

that increasing the magnetic parameter values 

decreases the permeability ( )K   which is consistent 

with Fig. (2). 

Figure (4) shows the solid volume fraction as a 

function of infiltration height. It is important to note 
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that as M decreases the dynamics of capillary rise for 

local volume fraction tend to move toward the 

linearity. This is evidence that penetration of liquid 

through the deformable porous material is slower as 

magnetic parameter increases. This can also be seen 

in (2), where the curve ( )sh t  shows the slower 

dynamics for the liquid height when value of 

magnetic parameter is increased. In general, as 

magnetic parameter increases, the solid volume 

fraction increases throughout the deformable porous 

material. 

 

 
Fig. 3. Permeability as a function of z for 

different values of Magnetic parameter M. 

 

 
Fig. 4. Solid volume-fraction distribution as a 

function of z for different values of Magnetic 

parameter M. 

 

Note that the choice of solid stress ( )  and 

permeability ( )K   plays an important role in 

capillary rise dynamics. 

Figure (5) shows the liquid volume fraction as a 

function of infiltration length. This figure shows the 

fraction of liquid in the deformable porous material. 

The capillary rise dynamics is slower as we decrease 

the magnetic parameter M. The fluid possessing 

MHD properties follow slower dynamics which in 

turn results in slower deformation in the deformable 

porous material. This behavior can also be seen in 

Fig. (2) shows by the curve represented by ( )lh t . 

This was the main objective to investigate the effects 

of magnetohydrodynamic flow during the capillary 

rise into deformable porous material. 

 

 
Fig. 5. Liquid volume-fraction distribution as a 

function of z for different values of Magnetic 

parameter M. 

 

4. CONCLUSION 

In this paper we have investigated the capillary rise 

of MHD fluid into deformable porous material. This 

work is motivated from experimental as well as 

theoretical studies Sommer and Mortensen (1996), 

Preziosi et al. (1996), Barry et al. (1991), Anderson 

(2005), Siddique et al. (2009), Siddique and 

Anderson (2011), Eldabe et al. (2011) that have 

highlighted the physical significance of these 

phenomenon. Our finding in this work carries 

numerical as well as physical significance. Summary 

of our work is based on magnetic parameter M and 

compared with that of Siddique et al. (2009) in the 

absence of gravitational effects. Our model is an 

analog of classical Washburn model Washburn 

(1921) for rigid porous material and Sommer and 

Mortensen (1996), Anderson (2005), Siddique et al. 

(2009) for deformable porous materials. 

We found that the imbibition of 

magnetohydrodynamics (MHD) fluid into 

deformable porous material is slower as compared to 

in the absence of no magnetic effects. This 

information could be helpful in industrial processes 

such as inkjet printing and dyeing the fabric. Studies 

in the past i.e Lago and Araujo (2001), Zhmud et al. 

(2000), Siddique et al. (2009) have shown that the 

volume of the liquid that penetrates into the porous 

material in time t is proportional to t for early 

times but for longer times the dynamics deviates 

from this trend. Our finding confirms this as well and 

leads to the conclusion that capillary rise or 

imbibition process of liquid depends on the fluid 

properties as well. In case of deformable porous 

material these properties of fluids play an important 

role in material deformation process. 

Our findings indicate that this model needs to be 

further investigated both theoretically as well as 

experimentally. In addition to these, other 

complications such as chemical interaction between 

the liquid and solid phases, using models of different 

permeability and solid stress available in the 
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literature and gravitational effects could lead us in 

predicting dynamics of magnetohydrodynamic 

fluids. We hope that this simple model could lead to 

more sophisticated models as well as experimental 

investigations. 
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A GOVERNING SYSTEM OF EQUATIONS 

We consider the porous deformable porous material 

as a continuous binary mixture of solid and fluid 

phase, where each point in the mixture is occupied 

by both fluid and solid. We also assume that both 

fluid and solid are intrinsically incompressible and 

porous material to be isotropic. The variable of 

interest in wet porous material are the solid volume 

fraction  , the fluid and solid velocities ( ,l su u ) 

respectively, fluid pressure p, and solid stress σ. We 

assume that the density of solid and fluid to be 

constant and the conservation of mass for both 

phases can be written as follows 

. ( ) 0s
t





 


u                                                (20) 

 . (1 ) 0.l
t





  


u                                          (21) 

Momentum balance for both phases can be written as 

m
m m m m mr J B

t


 
      

  

v
v v T           (22) 

where , .m l s  The stress tensor is expressed as 

,m m mP   T I                                              (23) 

The friction force term is given as 

( ) .s
l s s lK P       u u                              (24) 

Maxwell’s equations 

  =  ,cB J                                                       (25) 

  =  0,B                                                               (26) 

  =  .
t


 



B
E                                                     (27) 

And Ohm’s law is written as 

( ).m
o  J E B                                                   (28) 
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