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ABSTRACT 

The purpose of this paper is to investigate the thermal instability problem under the influence of three diffusing 

components on fluid saturated horizontal porous media under local thermal non-equilibrium effect. These three 

components are vertical magnetic field, solute and heat. We considered an electrically conducting two 

components fluid and anisotropic porous medium. The physical system is heated and salted from above. Flow 

in the porous medium is characterized by Darcy model, whereas the fluid and solid phases are not in local 

thermodynamic equilibrium (LTNE). Linear stability analysis is used to calculate critical Darcy-Rayleigh 

number and corresponding wave number for onset of stationary convection. The study is based on mainly four 

controlling parameters, Darcy-Chandrasekhar number (Q), dimensionless inter-phase heat transfer coefficient 

(H), Soret (Sr) and Dufour (Du) cross-diffusion parameters, among several. We illustrated the effects of these 

parameters on thermal instability and found parameters may have stabilizing or destabilizing effects, thus may 

advance or delay the onset of convection. Various comparative studies are also presented between different 

cases and conditions, such as for anisotropic and isotropic cases, cross-diffusion and without cross-diffusion 
cases and for different values of Sr and Du. 

Keywords: Thermal non-equilibrium; Magneto-convection; Darcy-Rayleigh Number; Fingering instability; 
Cross-diffusion. 

NOMENCLATURE 

a Horizontal wave number 

c specific heat capacity 

C concetration 

d length of the porous layer 

DM solute diffusivity 

DF DuFour coefficient 

DT soret coefficient 

Du duFour parameter 

g  acceleration due to gravity  

H non-dimensional inter-phase heat 

transfer coefficient  

sh  inter-phase heat transfer coefficient 

zh  perturbed magnetic field along z-axis 

K permeability of porous layer 

, ,x x yK K K  characteristic permeabilities in the x, y 

and z directions 

Le Lewis number  

l,m x-component and y-component of 

wavenumber  

p reduced pressure  

Pm magnetic Prandtl number 

)-( magnetic field ( )-(1  )-(2  )-(3 )  

Q Darcy-Chandersekhar number  

q  velocity 

R Darcy-Rayleigh number  

RC Critical Rayleigh number 

RS Solutal Rayleigh number 

Sr soret parameter  

fT  temperature of fluid,  

sT  temperature of solid, 

∆T temperature difference across the 

porous layer  

lT  temperature of lower surface  

TU temperature of upper surface 

t time 

x,y,z space coordinates 

 
κ thermal diffusivity  

κ f  thermal diffusivity for fluid  

κs  thermal diffusivity for solid 

βC  Coefficient of concentration expansion 
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βT  coefficient of thermal expansion 

Λ magnetic viscosity 

η f  fluid thermal conductivity ratio  

ηs  solid thermal conductivity ratio 

ε porosity 

µ dynamic viscosity of the fluid 

m  magnetic permeability 

ν kinematic viscosity 

ρ density of fluid 

0ρ  reference density 

γ porosity modified conductivity ratio 

χ diffusivity ratio 

ξ anisotropy ratio 

Θ amplitude of fluid temperature 

perturbation 

Φ amplitude of solid temperature 

perturbation 

Ψ amplitude of fluid concentration 
perturbation  

Other symbols 

D d/dz 

2
1  

2 2

2 2x y

 


 
  

 

Subscripts 

b basic state 

c Critical 

f Fluid 
S Solid 

superscripts  

′ perturbed quantity 

∗ dimensionless quantity 

 

1. INTRODUCTION 

Double-diffusive convection in fluid-saturated 

porous media with thermo-diffusive effect is of 

practical interest in many engineering applications 

such as petrology, hydrology, solidification of binary 

alloys as well as many other applications, and well 

documented by Nield and Bejan (2013). When an 

imposed magnetic field is associated with double-

diffusive convection in a fluid-saturated porous 

medium, then it has various applications in science, 

engineering and technology (Wallace et al. (1969)). 

One of the key importance of such type of convection 

is seen in petroleum reservoirs where the system 

comprises of both electrically inert solid and 

electrically conducting fluid phases. Due to its 

applications, as mentioned above, the problem has 

attracted many researchers to work in this field. 

Some of the recent literature in this area are: 

Sarvanan and Yamaguchi (2005), Bhadauria et 

al.(2008a,b,2010). Bhadauria et al. (2008 a, b, 2010) 

studied the effect of magnetic field on thermal 

modulated convection in porous medium. Specially 

in the paper of (2010), the present authors have 

studied the effect of thermal modulation in double-

diffusive magneto-convection. 

According to fact that the fluid density depends on 

solute concentration, it leads to a competition 

between thermal and compositional gradients. So it 

is obvious to ask what will happen when cross-

diffusion takes place in double-diffusive magneto-

convection? In a system where three diffusing 

properties (magnetic field, solute, heat) are present, 

instabilities can occur only if at least one of the 

component is destabilizing. In the present paper, we 

are attempting to answer the above question. Lots of 

work is available on the onset of double-diffusive 

convection in a porous medium with cross-diffusion 

effects (Nield and Bejan (2013)). Thermal 

convection in a binary fluid driven by the Soret and 

DuFour effects, has been investigated by Knobloch 

(1980). He has shown that the equations are identical 

to the thermo-solutal problem except for a relation 

between the thermal and solute Rayleigh numbers. 

The double diffusive convection in a porous medium 

in the presence of Soret and DuFour coefficients has 

been analyzed by Rudraiah and Malashetty (1986). It 

is important to mention that most of the work related 

to double-diffusive convection with and without 

cross-diffusion is considered when system is heated 

and salted from below. What will happen if we 

consider the case of heating and salting from above? 

From the available literature, it can be stated that due 

to its occurrence in many situations such as in 

oceanography, it is matter of attraction for 

researchers. In this case double-diffusive convection 

differ from classical Rayleigh Be´nard convection. 

There is two fundamental new flow structures can 

appear: layers and fingers. Fingers are vertically 

oriented long and narrow regions of up or down 

welling fluid which can occur if the fluid property 

with large diffusion coefficient (for example 

temperature) imposes a stability gradient on the fluid, 

whereas the property with the small diffusion 

coefficient (the salt concentration in oceanography) 

is unstably stratified (Huge and Tilgner (2010)). A 

study of convective instability in a fluid mixture 

heated from above with negative separation ratio 

(Soret coefficient) was performed experimentally by 

La Porta and Surko (1998). This topic is well 

documented in the Huge and Tilgner (2010) and 

reference of it. 

Thermal equilibrium is assumed between solid 

porous matrix and saturated fluid in most of the 

available literatures related to thermal convection in 

porous media. But for sufficiently large Rayleigh 

number or rapid heat transfer for high speed flow, it 

can be expected that the equilibrium will break 

down, so that the respective local mean values of the 

temperature of solid and fluid phases are not same. 

Local thermal non-equilibrium (LTNE) state will be 

more suitable than local thermal equilibrium (LTE) 

state in this situation. A two-phase model for energy 

equations was well documented in the book of Nield 

and Bejan (2013). Rees and Pop (2005), Banu and 

Rees (2002), Rees et al. (2008) have investigated 

thermal non-equilibrium effect on natural convection 

in horizontal porous layer. Recently Kuznetsov et. al. 

(2015) is investigated analytically, the effect of local 

thermal non-equilibrium on the onset of double-

diffusive convection in a porous medium consisting 

of two horizontal layers, each internally heated. 
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It is also noticeable that most of works related to 

convective flow with LTNE effect have dealt with 

mechanical and thermal isotropic case. Mechanical 

term is used in the sense when porous matrix allow 

fluid flow with same permeability in all possible 

directions. Whereas thermal term indicates that heat 

is equally distributed in all possible directions in 

fluid as well as solid. However, in many practical 

situations the porous materials are anisotropic in 

their mechanical and thermal properties. Onset of 

thermal convection in horizontal porous layer with 

anisotropic permeability was first investigated by 

Castinel et al. (1974). Later on Epherre (1975) 

extended the stability analysis to media with 

anisotropic thermal diffusivity. Malashetty et al. 

(2005) investigated onset of convection in an 

anisotropic porous medium under LTNE effect, 

when porous medium is heated from below. The 

effect of mechanical and thermal anisotropic on the 

stability of gravity driven convection in rotating 

porous media in the presence of thermal non-

equilibrium is investigated by Govender and Vadasz 

(2007). They considered the physical system heated 

from below. 

The idea of this paper is influence by the recent work 

of Saravanan and Jegajothi (2010) and Srivastava et 

al. (2011). In the first paper, they have investigated 

the stationary fingering instability in a non-

equilibrium porous medium with coupled molecular 

diffusion. They focused on the effects of cross-

diffusion parameters and inter-phase heat transfer 

coefficient. Where as in the second paper, authors 

presented impact of magnetic field and anisotropic 

effect on onset of convection in horizontal porous 

media. A question arise, what will happen if we 

consider the magnetic field effect (i.e. three diffusing 

components) with mechanical and thermal 

anisotropic properties Motivated by the importance 

and impact of three diffusing components with more 

realistic anisotropic condition on the onset of 

convection, we would like to investigate the problem 

theoretically in this article. An outline of the paper is 

as follows. In section 2, the mathematical 

formulation and solution of the physical problem are 

given. Linear stability analysis presented in section 

3. Results and discussions are reported in section 4. 

Finally, some important features of the analysis are 

concluded in section 5. 
 

 
Fig. 1. Schematic of physical configuration. 

 

2. GOVERNING EQUATIONS 

We consider an electrically conducting two 

component fluid-saturating anisotropic porous 

layer of depth d, which is heated and salted from 

above confined between two parallel horizontal 

planes at z = 0 and z = d. Cartesian coordinates have 

been taken with the origin at the bottom of the 

porous medium, and the z-axis vertically upwards. 

The surfaces are extended infinitely in x and y 

directions and maintained at a constant gradient ∆T 

and salinity ∆S across the porous layer. A constant 

magnetic field  is maintained externally in 

the vertical upward direction. We use a two-phase 

model for heat equation with separate thermal 

conductivities for the solid and fluid phases 

respectively, because the solid and liquid phases of 

the medium are considered not to be in local 

thermal equilibrium. A schematic digram of 

physical configuration of the problem has been 

shown in Fig. 1. Under the Boussinesq 

approximation, the dimensional governing 

equations for the study of magneto-convection in 

an electrically conducting-fluid-saturated 

anisotropic porous layer are: 

. 0,q                                                                              (1) 

.) ( 0,                                                                              (2) 

0 0 0

ρ1
. ) (. ) ( 0,

ρ ρ ρ

f mP g vK q


                    (3) 

2

ε(ρ ) ρ ( . ) (εκ )

                              ( ),

f
f f f f f f f

f s s f

T
c c q T T

t

D C h T T


    



   

          (4) 

(1 ε)(ρ ) ((1 ε)κ ) ( ),s
s s s s s s f

T
c T h T T

t


     

  
(5) 

2 2ε ( . ) ε ε ,m T f

C
q C D C D T

t


     


                     (6) 

2) (
. ) ( ) ( η ) (.q q

t

 
        


                         (7) 

The constants and variables in the above equations 

have their usual meanings and are given in the 

nomenclature. The relation between the reference 

density and temperature is given by 

0ρ ρ ρ [1 β ( ) β ( )].f T u f C u fT T C C               (8) 

where β 0T  and β 0C  are the coefficient of 

thermal and concentration expansions, respectively. 

The boundary conditions are 

,  at  0  and  ,

                                                  at  .

f S l l f S u

u

T T T C C z T T T

C C z d

     

 
(9) 

Eqs. (1) − (7) may be non-dimensionalised using the 

transformation 

* *

εκ
( , , ) ( *, *, *),( , , ) ( *, *, *)

(ρ )

κ
    *, ,

(ρ )

fz

f f

fz
f f s s

f f z

x y z d x y z u v w u v w
c d

p p T TT T TT
c K



 
   

 
 

 
     
 
 
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2
*

(ρ )
*,) ( ) ( ) ( , *

κ

f f
b

fz

d c
C CC t t

 
       
 
 

 (10) 

where ′∗′ refers to the non-dimensional quantity. 

Taking the curl twice of momentum equation and 

considering its z-component, after dropping the 

asterisk, we get 

2 2 2 2 2
1 1 1

1
R QPm ,

ξ
f S zD w T R C Dh

 
         
 

  

(11) 

2
2 2 2
1 12

R
η Du ( )

R

                                                             ( ),

f f f S
f f

s f

T T T
w T D C

t z z

H T T

  
      

  

 

 (12) 

2
2
1 2

χ η γ ( ),s s
s s s f

T T
T H T T

t z

 
    

 
                  (13) 

2 2
1

2 2
1

1
( )

Le

SrR
           ( ) ,

Le
f

s

C C
w D C

t z

D T
R

 
   

 

  

                                     (14) 

2Pm .z
z

h w
h

t z

 
  

 
                                                      (15) 

together with the boundary conditions 

0 at  0  and  1,

                                                              at 1.

f S f ST T C z T T C

z

      


 

(16) 

where 

0

2

ρ βρ β
R= ,R = ,

ε κ ε κ

??
Q= ,

ρ

D β
Pm= ,ξ= , ,Du= ,

κ εκ εκ β

β (ρ )κκ εκ
Le= ,Sr= γ= ,χ= ,

β (1 ε)κ (ρ )κ

κ κκκ
η ,η .

κ κ κ κ

f C zf T z
S

fz fz

m z

sx f T

fz z fz fz C

s C s s fzfz fz

m m T fz f f sz

fy sysxfx
f s

fz fz sz sz

g CK dg TK d

K

v

h dK
H

K

D c

D D c

 












   

  

(17) 

are the Darcy-Rayleigh number, solutal Rayleigh 

number, Darcy-Chandrasekhar number, magnetic 

Prandtl number, non-dimensional inter-phase heat 

transfer coefficient, Dufour parameter, Lewis 

number, Soret parameter, porosity modified 

conductivity ratio and diffusivity ratio. Eqs. (11) − 
(16) allow a basic conduction state given by 

(0,0,0),b fb sd bq T T C z                                     (18) 

Combining Eqs. (11) and (15), we get 

2 2 2 2 2
1

2 2
1

2 2
1

1
Pm QPm

ξ

                                        R Pm

                              R Pm 0.

f

D D w
t

T
t

C
t

    
         

   

 
   

 

 
     

 

 

(19) 

3. LINEAR STABILITY ANALYSIS 

We are concerned only with finding thresholds for 

the onset of convection, hence, it is sufficient to 

intigate the stability of the basic state by linear 

analysis. We perturbed the basic state by considering 

the infinitesimal perturbations. The perturbation 

variables are defined as: 

[ , , , ] [0, , , ] [ , , , ].f s fB sB Bw T T C T T C W        (20) 

Substituting expression (20) into the Eqs. (12) − (14) 

and (19), the linearised equations are 

2 2 2 2 2
1

2 2 2 2
1 1

1
Pm QPm

ξ

R Pm R Pm 0,S

D D W
t

t t

    
         

   

    
           

    

         

(21) 

 

2 2
1

2 2
1

η

R
                  Du 0,

R

f

S

W D H H
t

D

 
        

 

   

                     (22) 

2 2
1γ χ η γ 0,sH D H

t

 
        

 
             (23) 

and 

 2 2 2 2
1 1

SrR 1
( ) 0

R Le LeS

W D D
t

 
         

 
  

(24) 

The corresponding boundary conditions reduce to 

0 at 0,1 and 0 at 0,1.W z z                 (25) 

In this study we restrict our self to investigate only 

stationary stability, as discussed by Saravanan and 

Jegajothi (2010). To solve our system of Eqs. (21) − 

(25), we apply normal mode technique, thus express 

the perturbed variables as given below 5) 

( )
1 2 3 4[ , , , ] [ , , , ] sini lx myW A A A A e z          (26) 

where 1 2 3 4, , ,A A A A are constants and l, m are wave 

numbers in x, y directions respectively. We 

Substitute Eq. (26) into Eqs. (21) − (24) and get the 

matrix equation XA = 0 where 
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2
2 2 2

2 2
2 2

2 2

π
         R                        0                         R  

ξ

R ( π )
1              (η π )                    Du

R

0                      γ           (η π γ )        

S

S
f

s

a a a

a
a H H

X

H a H

 
  

 
 


  



  

2 2 2 2

             0

SrR( π ) ( π )
1                                0                     

R Le LeS

a a

 
 
 
 
 
 
 
 
 
  
 
 

 (27) 

For a non-trivial solution we have Det(X) = 0. Thus 

we get 

5 2

2 52
2

3 3 5
2

4 4

1 α
[Du{ α }

(1 )

α αα
                   

α

α α α
              ].

αα α

Sr
R R

Sr a

R
a

R H H

a

 


 


 

                                     (28) 

where 

2
2 2 2 2

1 2

2 2 2 2 2
3 4

π
R R Le,α ( π ),α ,α η

ξ

π ,α η π ,α η π γ

S f

s s

a a a

a a H

       

    

The minimum value of R in Eq. (28) can be obtained 

by 0.
R

a





However it is difficult to obtain it in 

closed form, therefore, we have used the 

multidimensional Newton-Raphson iteration scheme 

as used by Banu and Rees (2002). 

When we take Q = 0 and isotropic case, we get 

2 2 2

2

2 2 2

2 2 2

1 (π )
        [Du{R }

(1 )

(π )
{ }{1 }]

(π γ )

a
R Sr

Sr a

a H
R

a a H


 




  

 

           (29) 

same as result of Saravanan and Jegajothi (2010). 

4. RESULTS AND DISCUSSIONS 

In this section, we have attempted to built up a 

picture of how LTNE affects the onset of double-

diffusive thermal convection in electrically 

conducting fluid saturated anisotropic porous 

medium under cross-diffusion effects. The porous 

medium is considered as mechanically and thermally 

anisotropic. We will emphasis only the effects of 

Darcy-Chandrasekhar number (Q) (magnetic effect), 

non-dimensional inter-phase heat transfer coefficient 

(H) (LTNE effect), DuFour (Du) and Soret (Sr) 

effects (cross-diffusion effects) out of several. A 

comparative study has also been performed on the 

basis of isotopic and anisotropic effects, cross-

diffusion and without crossdiffusion (pure double 

diffusive) and for different values of Sr and Du. 

Since H is a quantity that is not easily measurable, 

therefore, we take nearly the same set of values of 

the parameters as taken by Govender and Vadasz 

(2007). The values of the Q are taken to be very small 

due to porous medium. Also due to the non-

availability of accurate experimental values of Sr and 

Du, it is impossible to proceed to a practical 

quantitative study of cross-diffusion effects. The 

results obtained from Eq. (28) have been presented 

graphically in Figs. 2 − 15. 

 

 
Fig. 2. Variation of R with a. 

 

Initially we consider the neutral stability curves in 

Figs. 2 − 5 and depict the variation of the Rayleigh 

number R with respect to the wave number a for 

fixed values of the parameters Q = 25.0, η 1.5,f  s 

= 0.1, ξ = 0.5, H = 100.0 Du = 0.5, Sr = 0.5, 

R 100.0,S  Le = 2.0 and γ = 0.5, while varying one 

of the parameters. From the figures we see that 

initially the value of R is large and decreases on 

increasing the wave number. It touches the minimum 

value at some value of a and then increases as the 

values of a increases. The minimum value of R is 

known as the critical value of Rayleigh number, 

denoted by R .c The corresponding value of the wave 

number a is known as the critical value of the wave 

number and is denoted by .ca  

In Fig. 2, we find the effect of Q on thermal 

instability. From the figure it is observed that as the 

value of Q increases, the minimum value of R also 

increases, thus showing the stabilizing effect on the 

system. This can be explained for observing the 

behaviour of magnetic field lines. Increasing the 

value of Q implies that magnetic field strength 

permeating the medium is considerably strong. It 

induces viscosity into fluid, and the magnetic lines 

are distorted by convection. Then these magnetic 

lines hinder the growth of disturbances leading to the 

delay in onset of instability. 

In Fig. 3, we investigate the effect of variation of 

dimensionless inter phase heat transfer coefficient 

(H) on the onset of convection. We observed that as 

H increases the minimum value of R increases thus 

the system becomes more stable. To explain this: if 

we increases the value of
2

,
εκ

s

fz

h d
H   only the value 

of inter phase heat transfer coefficient sh  increases 

as d, ε and κ f  are used in fixed parameters. That 

indicates heat transfer between solid and fluid is 

increases (maximum heat involve in transferring not 
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in convection), therefore delay the onset of 

convection. 

 

 
Fig. 3. Variation of R with a. 

 

 
Fig. 4. Variation of R with a. 

 

 
Fig. 5. Variatio n of R with a. 

 

In Fig. 4, we show the effect of Soret parameter (Sr). 

It is observed that on increasing the value of Sr, 

decreasing the minimum (critical) value of R, thus 

destabilizes the system. It is also remarkable that 

maximum stability obtained for negative value of Sr. 

It can be explain as: positive Sr means solute diffuse 

towards cooler plates, whereas negative Sr 

represents that solute diffuse towards hotter plate. 

Therefore negative Sr opposes the convection and 

delay the onset of convection. 

In Fig. 5, we considered the effect of DuFour 

parameter Du. We find that critical value of Rayleigh 

number (R )c  increases on increasing the values of 

Du, thus making the system stable. 

 
Fig. 6. Variation of Rc  with H. 

 

 
Fig. 7. Variation of ac  with H. 

 
Now we consider the Figs. 6 − 11, and depict the 

variation of Rc  and the corresponding αc with 

respect to the inter-phase heat transfer coefficient H 

for the fixed values of the parameters Q = 25.0, 

η 1.5,f  η 0.1,s  ξ = 0.5, Du = 0.5, Sr = 0.5, 

R 100.0,S   Le = 2.0 and γ = 0.5, while varying one 

of the parameters. From these figures we observe that 

initially when H is small the value of Rc  is also 

small, increases for intermediate values of H and 

then becomes constant as the values of H increased 

further. Figs. 6 and 10, depict the effects of Q and Du 

respectively, on thermal instability. It is observed 

from the figures that on increasing Q and Du, the 

value of Rc  increases, thus stabilizing the system. 

Further from Fig. 8 we find that on increasing Sr the 

value of Rc  decreases. This shows that increase in 

the value of Sr makes the system unstable. From the 

Figs. 7, 9, and 11, we find that initially when H is 

small αc is also small. At some particular value of H 

we see that ca  takes on a maximum value and then 

decreases and becomes constant at very large values 

of H. From Fig. 7, which depicts the effect of Q on 

magneto-convection, we find that value of αc 

increases on increasing Q. However from Figs. 9 and 

11 having same patterns, which show the effect of Sr 

and Du on thermal instability of the system, we 

observed that initially ac increases on decreasing Sr 

and Du, attains its maxi-mum values at some H and 

then decreases on increasing Sr and Du respectively. 

To understand the above phenomena, we can recall 

the physics of inter phase heat transfer coefficient. It 

states that for small values (i.e. H → 0) and large 
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values (i.e. H → ∞) of H system behaves like closed 

to local thermal equilibrium (CLTE) not to LTNE. A 

simple physics involve behind this, when H is small 

that indicates that heat transfer between solid and 

fluid is so small that it cannot influence the 

convection. Similarly when H is very large, heat 

transfer between solid and fluid is going to negligible 

and cannot influence the convection. So that we can 

see the effect of LTNE only for intermediate value of 

H. 

 

 
Fig. 8. Variation of Rc  with H. 

 

 
Fig. 9. Variation of ac with H. 

 

 
Fig. 10. Variation of Rc  with a .c  

 

Now in upcoming figures, we are going to discuss a 

comparative study between different conditions as 

isotropic (mechanical as well as thermal) and 

anisotropic porous medium, cross diffusion and 

without cross diffusion and in last for different 

values of Du and Sr. 

 
Fig. 11. Variation of ac  with H. 

 

 
Fig. 12. Comparison between iso tropic and 

anisotropic case in terms of ξ . 

 
In Figs. 12 and 13, we compare the results of 

isotropic and anisotropic cases with the help of 

graphs. In Fig. 12, mechanical anisotropic and 

thermal isotropic cases are considered. From the 

figure, it is clear that as mechanical anisotropic 

parameter (ξ) increases from 0.5 to 1.5, the value of 

critical Rayleigh number decreases and thus 

destabilize the system. We represent our study as 

isotropic case (ξ= 1) and anisotropic case (ξ < 1) and 

(ξ > 1). To understand the phenomena, we recall 

definition of ξ= .x

z

k

k
As zk is used in other fixed 

parameters, so kz 

increasing ξ from 1 means increasing the value of 

( )x x zk k k  that is flow permeability is more in 

horizontal direction than vertical and similarly if the 

value of ξ decreases from 1, decreasing the value of 

( ).x x zk k k From figure, system is most stable at = 

0.5, then for ξ = 1.0 and least stable at ξ = 1.5. When 

ξ < 1, horizontal permeability is smaller and slow 

down horizontal motion thus conduction solution is 

stabilized. Whereas when ξ > 1, horizontal 

permeability is larger and enhance horizontal motion 

thus conduction solution is destabilized. 

In Fig. 13, we compare the stability criteria for 

mechanical isotropic and thermal anisotropic porous 

medium. The study based on the results for three 

conditions (i) when thermal conductivity for solid is 

greater than fluid i.e. (η >η ),s f  (ii) isotropic case 

(η =η )s f and (iii) when η <ηs f . It is clear from 

figure that system is most stable for condition (i) 
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(maximum value of the Rc ) and least stable for 

condition (iii) (minimum value of the Rc ). This 

behaviour of system is explained as: if thermal 

conductivity of solid is more than fluid then most of 

the heat transfer in solid and delay onset of 

convection. Whereas when conductivity of fluid is 

more than solid, it enhance the onset of convection. 

 

 
Fig. 13. Comparison between isotropic and 

anisotropic case in terms of η f and η .s  

 

 
Fig. 14. Comparison between with and without 

cross-diffusion. 

 

 
Fig. 15. Comparison of Rc  for different cases 

related with value of Du and Sr. 

 

In Fig. 14, we compare the results for two conditions 

(i) with cross-diffusion (Sr = 0.5,Du = 0.5) and (ii) 

without cross-diffusion (Sr = 0,Du = 0) that is purely 

double-diffusive convection. It is observed from 

figure that system is more stable for purely double-

diffusion effect than with diffusion effect. The 

reason of this behaviour is explained as: we 

considered the positive Sr and we mentioned above 

that has destabilizing effect. It is also well known 

fact that the effect of Du on onset of convection in 

porous media is negligible in comparison to Sr. 

In Fig. 15, we considered different conditions related 

to the values of Sr and Du. We conclude from 

figure that ( , ) ( )R Rc Soret Dufor c Soret   

( , ) ( )R Rc Soret Dufor c nocross diffusion     

( ) ( , )R Rc Dufour c Soret Dufour   

( , )R ,c Soret Dufour  thus for fixed value of other 

parameters, positive Sr and positive Du highly 

destabilize the system where as negative Sr and 

negative Du stabilize the system. These patterns of 

our results are similar to those obtained by Saravanan 

and Jegajothi (2010). 

5. CONCLUSIONS 

In the present article, linear stability analysis is 

performed to investigate the LTNE effect on finger 

type double-diffusive, magneto-convection in an 

anisotropic porous medium, heated and salted from 

above. The Darcy model is used for the momentum 

equation. We divided our study into two parts. In first 

part, we studied the effect of main controlling 

parameters in R – a  and R / logc ca H  planes. 

Whereas in second part, we illustrated a comparative 

study between different cases and conditions. 

From the first part, following conclusions are drawn: 

 The main controlling parameter Q, which 

represents the effect of magnetic field on the 

onset of convection, strengthening the stability 

of system. 

• Inter-phase heat transfer coefficients (H) and 

DuFour parameter (Du) stabilize the system 

that is delay the onset of convection. 

• Soret parameter (Sr) destabilizes the system, i. 

e. enhance the onset of convection, and system 

is most stable for negative value of Sr. 

• From R logc H plane, we conclude that for 

H → 0 and H → ∞, system behaves like CLTE 

than LTNE, whereas for intermediate values of 

H, the effect of LTNE is reasonable. 

From the second part, the conclusions are: 

• We compared the results of mechanical 

anisotropic and thermally isotropic case and 

find the stability criteria as, most stable for ξ < 

1 then for ξ = 1 (isotropic case) and least stable 

for ξ > 1. 

• We also compared the results of thermally 

anisotropic and mechanically isotropic case 

and conclude stability criteria as: most stable 

when η >ηs f then η =ηs f and least stable 

η <ηs f . 

• It is observed that system is more stable for 

pure double diffusive convection than with 
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cross-diffusion case. 

• We presented the stability criteria for different 

conditions based on values of Sr and Du. 
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