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ABSTRACT 

This paper presents a comparative study of five most widely used two-equation turbulence models in 

predicting the developing flows in two 90° curved rectangular ducts. These include the standard k-ε model, 

the shear stress transport k-ω model, and three low-Reynolds number k-ε models by Jones and Launder, 

Launder and Sharma, and Nagano and Hishida, respectively. The computational time for convergent 

solutions, streamwise and secondary velocities, pressure distributions as well as the Reynolds-averaged 

turbulence quantities resolved by these models are compared and validated against available experimental 

data. The purpose of this paper are to provide a detailed comparative verification for applying the five most 

widely used two-equation turbulence models to predicting curved rectangular duct flows, which are a kind of 

proto type flows in fluids engineering, and to provide a reference for the selection of turbulence models in 

predicting such flows in industrial applications. 
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1. INTRODUCTION 

Turbulence in a 90° curved duct is a proto type flow 

in fluid dynamics and fluids engineering. This kind 

of flows occurs widely in engineering devices such 

as the cooling coils of heat exchangers and the flow 

passages in turbo-machinery. The streamline 

curvature brings great influences on the 

redistribution of the flow-field. A well known 

phenomenon is that the turbulence intensity is 

suppressed by the convex curvature but amplified 

by the concave curvature (Bradshaw 1973). As the 

results of the curvature and the pressure gradient, 

secondary motions, flow energy losses and 

enhanced heat transfer occur in curved ducts. These 

phenomena are very different from the flows in 

straight ducts, and are often decisive to the general 

performance of the engineering devices.  

Because of the academic and practical importance 

of the curved flows, researchers have devoted huge 

amount of efforts to study the problem, and a great 

number of theoretical and experimental 

investigations have been carried out. Benchmark 

experimental data of curved duct flows can be 

found in Humphrey et al. (1981), Taylor et al. 

(1982), Kim and Patel (1994), Suzuki and Kasagi 

(2000), Sudo et al. (2001), to name a few. Simple 

and concise reviews of these experimental studies 

have been presented by Suzuki and Kasagi (2000) 

and Sudo et al. (2001). Seeing in general, valuable 

experiments on the three-dimensional velocity 

components, pressure, heat transfer and turbulent 

intensity have been made available for the curved 

ducts of either circular or rectangular sections, with 

some typical radial ratio values, Rc / d (where Rc is 

mean curvature radius of the bend and d is the 

hydraulic diameter of the duct), and in a sensible 

Reynolds number range widely seen in engineering. 

These experimental investigations have not only 

contributed to the understanding of the development 

of turbulent flow in curved ducts, but also provided 

detailed observations of secondary motions and 

turbulence fluctuations in a form suitable for 

validation of numerical solution techniques and 

evaluation of turbulence models. 

Accurate prediction of the development of the 

turbulence in the curved ducts is still a challenging 

task for nowadays computational fluid dynamics 

(CFD) because of the numerical method. Restricted 

by the computational resource, early numerical 

calculations of turbulent flow in curved ducts 

solved the parabolic or partially parabolic RANS 

equations (Iacovides et al. 1987), which assumed 

that the flow was not returning even locally in the 

duct and the diffusion in the streamwise direction 

was negligible. Apparently, these assumptions may 
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be conflicted in strongly curved duct flows. On the 

other hand, low resolution discretization schemes 

such as the first-order “hybrid” scheme (Rhie 1985) 

or the “two-point backward difference” (Govindan 

et al. 1991) were widely used in those calculations 

of turbulent flows in curved ducts. As well known 

to nowaday’s CFD study, these simplifications on 

the governing equations and the low order 

discretization schemes are harmful to the resolution 

of numerical results.  

The second difficulty in predicting the curved-duct 

turbulent flow is the selection of turbulence model. 

In order to model the effects of curvature on the 

turbulence field, two-dimensional flow cases were 

studied by Wilcox and Chambers (1977) and 

Leschziner and Rodi (1981), and the coefficients of 

the turbulence model were modified by including 

the radius of curvature of the streamlines. These 

modeling methods are basically not applicable to 

complex three-dimensional flows because of the 

difficulties in numerically reconstructing the 

streamlines and defining the curvature. For curved 

duct turbulent flows, which are naturally three-

dimensional, simple eddy viscosity models (EVM) 

were widely employed by researchers in the early 

studies of predicting the flow behavior and to 

reproduce the effects of curvature. Kreskovsky et 

al. (1981) calculated the 90° bend turbulent flow of 

Taylor et al. (1982) using a mean-field closure 

(one- equation) model. Although a relatively coarse 

mesh (30 points in radius and 20 points in half-

span) was used, satisfactory agreement with the 

experimental data was still achieved over the first 

30° of the bend. Calculation of the same flow was 

performed by Govindan et al. (1991), using a 

mixing length (zero-equation) model and a finer 

mesh which has 49×49 nodes in the cross section. 

Comparisons of streamwise velocity contours were 

shown, and impressively, very well agreements 

between the calculation and experimental data were 

obtained for all cross sections from the upstream to 

the downstream of the ducts. But unfortunately, no 

further results were shown by Kreskovsky et al. 

(1981) and Govindan et al. (1991). Especially, the 

wall pressure, the turbulence intensities such as the 

fluctuating of velocity components and their cross 

correlations, which had been made available in 

Taylor et al.’s measurements, were not calculated 

and compared. 

In the family of RANS models for turbulence 

closure, two-equation eddy-viscosity models are 

widely employed in numerical analysis of curved 

duct flows. The k-ε type models are the most 

popular in the two-equation models. Humphrey et 

al. (1981) and Chang et al. (1983) employed the 

standard k-ε model (SKE) combined with the 

logarithm wall function. Their computational grids 

were relatively coarse. For example, in Humphrey 

et al.’s calculation of the 90° bend turbulent flow of 

Taylor et al., the mesh had only 11 nodes in half of 

the span and 14 points in the radial direction in the 

cross section of the duct. In order to improve the 

prediction, Iacovides et al. (1987) used the SKE in 

combination with a mixing-length hypothesis wall 

treatment. Their calculation used a 25×47 mesh to 

cover the half cross section of the duct between the 

symmetry plane and the end wall; such a mesh is 

much finer than that in Humphrey et al.’s (1981) 

study. Meanwhile, the non-diffusive QUICK 

scheme which was strongly recommended by 

Chang et al. (1983) was applied to the 

discretization. The calculated streamwise and 

secondary velocities were presented, and good 

agreements with experimental data were achieved. 

Based on these studies, Iacovides et al. (1990) 

employed an algebraic second-moment (ASM) 

model to compute the U-bend flow. The ASM 

model obtains the Reynolds stresses from an 

algebraic statement of their transports, it is still 

belonging to the family of two-equation models. 

The high Reynolds number version of k-ε model 

cannot be applied in the immediate vicinity of the 

wall, so it has to be implemented with the so-called 

logarithm wall function which may loss the 

universality for complex flows. Low Reynolds 

number k-ε models (also mentioned as near-wall k-ε 

models by researchers), however, directly model the 

turbulent viscosity by introducing a local turbulence 

Reynolds number and wall-damping functions. 

These models allow integration of the transport 

equations for both k and ε to the wall, at a cost of 

more intensive computational task. Application of 

Launder and Sharma’s   low-Re-number k-ε model 

(1974) to 90° curved rectangular ducts has been 

attempted by Raisee et al. (2006). In order to further 

improve the predicted results, a cubic nonlinear 

low-Re-number k-ε model (Craft et al. 1996) was 

included in their calculations. The results showed 

that both linear and non-linear low-Re-number k-ε 

models produced satisfactory predictions of the 

mean flow field, while the non-linear model 

returned even better predictions of the turbulence 

intensity quantities. Although no-surprisingly near-

wall second moment closures (Suga 2003) showed 

superiority in the results of Reynolds stress, the 

question of whether it worth to proceed with a 

complex turbulence model was not answered yet by 

researchers. Meanwhile, for non-linear models, 

numerical instability induced by high-order 

derivatives has to be suppressed so as to guarantee 

the convergence of calculation (Speziale and Ngo 

1988). The side effect of such suppression or 

filtering on the resolution of numerical results is not 

known yet. Indeed, despite the well-known 

deficiencies primarily related to the isotropic 

behavior, linear two-equation models are still the 

first choice for industrial purpose of a quick and 

stable prediction of complex flow fields. 

Another important and attractive two-equation 

eddy-viscosity model is the shear stress transport k-

ω model (SST). The model can also be integrated to 

the wall and does not require a wall function. The 

SST model is originally developed for prediction of 

aeronautics flows with strong adverse pressure 

gradients and separation (Menter 1993, 1994), but 

has since made its way into most industrial, 

commercial and research codes. The SST model is 

also criticized for being not capable of capturing the 

effects of streamline curvature and system rotation, 

so modifying the model so as to make it sensible to 
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rotation and curvature has been attempted by 

researchers in these years (Shur et al. 2000; Dhakal 

and Walters 2011). By so far, application of the 

original SST model to calculate flows with 

streamline curvature is mainly for two-dimensional 

(2D) cases such as the flow in U-turn (Dhakal and 

Walters 2011). Shur et al. (2000) compared the 

calculations of Kim and Patel’s 90° rectangular 

bend using the SST and three other models, the 

results of skin-friction distribution were presented 

and compared with experimental data. The study 

supported that a scalar eddy-viscosity model was 

able to treat the rotation and curvature properly if 

the sensitization method by Spalart and Shur (1997) 

was applied. However, no further calculated result 

about the curved duct was presented by Shur et al. 

(2000). Therefore, the validation and comparison by 

Shur et al. were too incomplete to provide a 

reference for selection of turbulence models in 

calculating curved duct flows. 

Based on the status quo of the research on curved 

duct flows mentioned in above, the present paper 

presents a comparative study of five most widely 

used two-equation turbulence models in predicting 

the developing flows in two 90° curved rectangular 

ducts. The models are the standard k-ε model 

(SKE), the shear stress transport k-ω model (SST), 

and three low-Reynolds number k-ε models by 

Jones and Launder (1972; JL), Launder and Sharma 

(1974; LS) and Nagano and Hishida (1987; NH). 

Two 90° curved ducts which have benchmark 

experimental data measured by Taylor et al. (1982) 

and Kim and Patel (1994), respectively, are selected 

as testing cases for consideration the effects of 

geometrical aspect ratio on the flow fields. In a 

curved duct of large aspect ratio, the flow is 

nominally two-dimensional, while the flow in a 

square duct is fully three-dimensional. The major 

difference between these two cases is the scale and 

the influenced region of the secondary motions. The 

main objective of this paper is to compare the 

performances of these five simple two-equation 

eddy-viscosity models in predicting the curved duct 

flows. The computational time for convergent 

solutions, the streamwise and secondary velocities, 

the pressure distributions as well as the Reynolds-

averaged turbulence quantities resolved by these 

models will be compared and discussed. 

2. GOVERNING EQUATIONS AND 

NUMERICAL METHOD 

Consider the Reynolds-averaged Navier-Stokes 

equations for three-dimensional, incompressible and 

steady flows, the conservation laws of mass and 

momentum are written as,  

0
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where p is the pressure,  is the kinematic 

viscosity, 
iu and 

iu  denote the mean and 

fluctuating velocities, respectively. 
i ju u   is the 

Reynolds stress which may be calculated using the 

Boussinesq eddy-viscosity-approximation:   
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where the turbulence kinetic energy 
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t  is the eddy viscosity.  

For the closure of the above equations, a turbulence 

model must be introduced. In the present work, five 

turbulence models are used; they are the SKE, SST, 

JL, LS and NH. These models are all among the 

most widely used and are based on the eddy-

viscosity assumption. The details of the SST model 

can be found in Menter’s study (1994). In the four 

k-ε type models (ε is the dissipation rate of k), the 

transport equations for k and ε, respectively, are as 

follows: 
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whereC
, 

1C , 
2C , 

k and 
 are the model 

constants, the eddy viscosity 
t  is then calculated 

by: 

2

t

k
C f 


                                                         (6) 

1f ,
2f  and f  are damping functions while D and E 

are additional terms for consideration of the wall 

effects. The formula and constants for models can 

be found in relevant literature. 

Eqs. (1), (2), (4) and (5) can be written in a general 

form as follows: 

 Γu S                                                    (7) 

where u  is the velocity vector, Γ
is the diffusion 

coefficient of  , and S
is the source term.   

represents the dependent variable (which is 1, 
iu , k 

or ε) according to transport equations. For the 

momentum equation, the pressure gradient is 

included in the S
.  

Integrating Eq. (7) over the control volume 

surrounding the node P and shown in Fig. 1, we 

have: 

 f f P
f f

C D S V                                         (8) 

where the summation is applied to all the facets of 
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the control volume V, i.e., f = n, s, e, w, b, and t (see 

Fig. 1). 
fC and

fD  are the transport fluxes through 

the face f due to convection and diffusion, 

respectively: 

 f f f f
f

C u A F                                          (9) 

 Γf f ff
D A                                            (10) 

where 
fA  is the area of f.  

 

 
Fig. 1. Control volume surrounding node P. 

 
The diffusive terms 

fD  is calculated by the central 

difference scheme. For considerations of both high 

order accuracy of numerical results and stability of 

calculation, the convection term is discretised by 

using the third-order SMART scheme (Gaskell and 

Lau 1988) and is implemented with a so-called 

“deferred correction” method. Denote the cell-face 

values of 
f  calculated by the first-order upwind 

(UPW) scheme and a high-order scheme with 
UPW

f and H

f , respectively, the convection term 

becomes: 

 H UPW H UPW

f f f f f f f fC F F F                (11) 

With these treatments, Eq. (7) is discretised into the 

final form as follows: 

P P N Ni i
a a b                                         (12) 

where the subscript Ni denotes the neighbor nodes 

N, S, E, W, B and T, shown in Fig. 1. The 

coefficients 
Pa , 

Ni
a and b  in discretization Eq. 

(12) and details about solution procedure are given 

by Lai et al. (2011). The solution of the governing 

equations is based on the SIMPLE algorithm 

(Patankar 1980). The calculations in this paper are 

carried out using an in-house code which uses a 

finite-volume grid arrangement in non-orthogonal 

system. The code is written using the FORTRAN 

computer language, and is parallelized according to 

the Open MP protocol for running on a small 

computer workstation which has 20 processing 

elements.  

For the simplicity of comparing the computational 

time in the present study, all the algebraic equations 

in the form of Eq. (12) are solved using the tri-

diagonal matrix method (TDMA) and applying an 

alternating direction implicit (ADI) strategy in the 

three coordinate directions. During a solution step, 

the coefficients in Eq. (12) are kept fixed for three 

to five iteration steps using the TDMA and ADI 

method, then the temperate results of 
P  are 

employed to update the coefficients of the discrete 

Eq. (12) so as to carry out a new solution step. 

Meanwhile, under relaxation is applied. The 

relaxation factors for pressure, velocity and 

turbulence quantities are set to be the same for 

calculations of using all the five turbulence models, 

namely, 0.7p   , 0.3u  , and 
. 0.3turb  , 

respectively. Further, for checking the convergence 

of calculations, denote the flow rate of a curved 

duct by Q, the calculated flow rate at a cross-section 

as Q1, convergence of calculation is judged by 

satisfying the criteria: 
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where mp is the unbalanced mass source of the 

pressure correction equation. The values of mp for 

all grid nodes should be zero when the continuity 

equation is satisfied (Patankar 1980). 

As pointed out by Shur et al. (2000), difficulties for 

imposing the inlet boundary conditions are 

encountered for computing these flows, due to the 

lack of experimental data on the mean and turbulent 

flow quantities in the near-wall region of the 

reference section of the duct. In this paper, the inlet 

boundary conditions are imposed by set the inflow 

velocity U equal to the bulk velocity Uc, the 

velocity components in the cross-section and 

normal to the bulk flow. Secondary velocities V and 

W at the inlet boundary are set to be zero. The 

inflow conditions for k and ε are imposed according 

to fully developed pipe flow, i.e., kin= 

(0.5~1.5)%×Uc
2/2, and εin = Cμkin

3/2/(0.03L), where 

L is the characteristic length of the flow. At the 

downstream boundary, zero gradient conditions are 

imposed for all variables except pressure. The no-

slip condition is assigned for the velocity on solid 

walls, while wall conditions applied for k and ε are 

not summarized here for limited space. 

3. TESTING CASES AND RESULTS 

For convenience of description, depict the two 90° 

curved ducts experimentally studied by Taylor et al. 

(1982) and Kim and Patel (1994), respectively, as 

Case A and Case B. Fig. 2(a) shows the geometry 

of Case A. The bound of square cross-section is d = 

40 mm, and the mean bend radius is 92 mm, which 

result in a radius ratio of 2.3. The upstream and 

downstream tangent lengths are 0.3 m and 0.8 m, 

respectively. The bulk velocity Uc = 1 m/s, 
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corresponding to the Reynolds number, Re, of 

40000. Fig. 2(b) is the configuration of Case B. The 

curved duct is of rectangular cross-section with an 

aspect ratio of 6 and the duct width H = 0.203 m. 

The lengths of the duct before and after the curved 

section are 8H and 26H respectively. The bulk 

velocity is Uc = 16 m/s, and then Re = 224000. XH 

is the coordinate in upstream (XH takes negative 

value) and downstream (XH is positive) tangents of 

the bend, normalized by the hydraulic diameter d. 

In Case A, r* is the normalized radial coordinate, 

r*=(r-ro)/(ri-ro); z* is the normalized spanwise 

coordinate, z*=z/(0.5d), so z*=0 is the symmetry 

plane of curved duct while z*=1 is the side wall. In 

Case B, Y is normalized radial coordinate, so Y=0 

and 1 are the outer and inner walls, respectively. 

And z* is the normalized by the duct width H in this 

case, z*=z/H.  

 

 
(a) Case A 

 

 
(b) Case B 

Fig. 2. Geometry of two curved ducts. 

 

3.1 Grid-Dependency Check 

Grid-dependency check is performed before 

comparing the results of turbulence models. Three 

grids are tested for each case, respectively, and the 

number of nodes is summarized in Table 1. All the 

tested grids are stretched in cross-sections so as to 

resolve the flow fields near the walls.  

Figure. 3 is the example of checking the grids for 

Case A. The streamwise velocity profiles calculated 

using the LS at θ=30° are shown.  At this plane, the 

core fluid still remains at the inner wall. It can be 

seen that grid-refining from Mesh A1 to A2 has 

produced a noticeable difference in the velocity 

profiles. However, when the grids are further 

refined, from Mesh A2 to A3, the plotting 

differences between the two numerical results are 

negligible. Therefore, Mesh A2 is believed to be 

fine enough to produce a grid-independent 

numerical solution. Similarly, Mesh B2 is selected 

for Case B.  

 

Table 1 Mesh for grid-dependency check 

 Number of grid points 

Case Radial Spanwise Streamwise 

Mesh A1 30 30 102 

Mesh A2 56 56 102 

Mesh A3 76 76 102 

Mesh B1 80 90 172 

Mesh B2 116 114 172 

Mesh B3 136 130 172 
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(a) θ=30°, r*=0.3 
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(b) θ=30°, r*=0.7 

Fig. 3. Streamwise velocity profiles calculated by 

three meshes in Case A. 
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The five models have been carefully tested for the 

grid-dependency, and the results show that Mesh 

A2 and Mesh B2, for Case A and Case B 

respectively, are fine enough for all the five models. 

So for the simplicity and clarity of comparison 

between turbulence models, the numerical results 

and analyses in the followed sections are based on 

using these selected meshes, i.e., Mesh A2 and 

Mesh B2 for Case A and Case B, respectively. 

 

3.2 Computational Time 

The needed iteration steps for convergence, 

tolerance and computational time for all the tested 

models are summarized and presented in Table 2. In 

Case A, the needed iteration steps for solution 

convergence using SST , JL, LS and NH models are 

less than SKE model, however, the computational 

time for SKE is less than other models, because of 

the lighter computational task for the SKE in a 

solution step. In Case B, low-Reynolds-number k-ε 

models and SST model have similar iteration steps 

for convergence. On the other hand, the number of 

needed solution steps for SKE is slightly more than 

other models. Identical to the situation in Case A, 

the computational efficiency of the SKE is the 

highest among the five turbulence models. 

 

Table 2 Computational efficiency of five models 

Models Iter. steps E3 Time 

SKE 10000 1.0E-8 2.5h 

SST 2500 1.0E-8 2.6h 

JL 2500 1.0E-8 2.6h 

LS 2500 1.0E-8 2.6h 

NH 2500 1.0E-8 2.6h 

(a) Case A 

 

Models Iter. steps E3 Time 

SKE 4800 1.0E-8 8h 

SST 4200 1.0E-8 8.2h 

JL 4200 1.0E-8 8.2h 

LS 4200 1.0E-8 8.2h 

NH 4200 1.0E-8 8.2h 

(b) Case B 

 

3.3 Basic Features of the Two Cases 

Before comparing the results predicted by different 

models, the basic features of the flow fields 

calculated by using the LS in the two cases are 

compared and presented in Fig. 4 to 6.  

Figure. 4 compares the streamwise velocity profiles 

in the symmetric planes of the ducts, at θ=45° and 

90°. At θ=45°, the maximum velocity of two ducts 

occurs both near the inner wall of the bends (where 

r=ri or Y=1, see Fig. 2). The radial gradients of the 

velocity near the outer side of the bends (where r=ro 

or Y=0, also please see Fig. 2) are less steep than 

near the inner wall. At the outlet of the bends, 

θ=90°, the velocity profile for Case B remains 

similar to that at θ=45°, but its value becomes more 

uniform along the radial direction. For Case A, the 

peak of streamwise velocity at θ=90° has moved to 

the duct center, the velocity gradient at the outer 

wall becomes steeper than at the inner wall. Seeing 

from velocity profiles in Fig. 4, the flow in Case A 

is more complex and fully three-dimensional. On 

the other hand, the flow in Case B has the 

characteristics of nominally two-dimensional flow. 

The pressure distributions along the centerlines of 

the outer and inner walls are shown in Fig. 5, where 

the pressure coefficient 
pC , is defined as:  

   20.5p ref cC p p U                               (14)  

It can be seen that the radial pressure gradient (the 

difference of pressure coefficient between the outer 

and inner walls at every streamwise location) in 

Case A is steeper than that in Case B. On the inner 

wall, Case A’s minimum pressure coefficient occurs 

at θ=30°, indicating that the favorable pressure 

gradient turns into the reversed at the location. Such 

trough of the 
pC  also means the flow is changed 

from accelerating to decelerating. But in case B, the 

pressure coefficient decreases mildly along the 

walls, except in the regions near the inlet and outlet 

of the bend, means the flow velocity in Case B is 

remained nearly uniform along the streamwise of 

bend. 
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Fig. 4. Streamwise velocity profiles along 

symmetrical centerline calculated by LS model. 
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Fig. 5. Pressure coefficients along the centerline 

of the outer and inner walls, calculated by LS. 

 

The most noticeable difference between two cases 

is the area influenced by secondary motion shown 

in Fig. 6 (cross-section at θ=90°, right side of the 

cross section is the inner surface of the bend; In 

Case B, only one third of the cross-section is shown 

for the secondary velocity vectors). Compared with 

that in the Case A, the secondary motion in the 

Case B is weaker and is confined to the corner 

regions near the sidewalls. Because of the large 

aspect ratio, the area influenced by the secondary 

motion is very limited. Therefore, the flow field in 

Case B shows some nominally two-dimensional 

characters. In Case A, a pair of counter rotating 

vortices occupy the area of almost the whole cross 

section, and the magnitude of the secondary 

velocity is also larger. 

 

  

(a) Case A (b) Case B 
Fig. 6. Secondary flow vectors. 

 

3.4 Validation and Comparison 

Case A 

The streamwise velocity in cross-sections and 

calculated by using the five turbulence models are 

compared with the experimental data and are shown 

in Fig. 7. The results of JL, LS and NH models 

almost duplicate with each other. It can be seen that 

the flow is still developing in the upstream of the 

bend (Fig. 7(a), XH= -0.25), and all the five models 

give a similar profile in the core region. Within the 

curved section, at θ=30°, the five models perform 

similarly except in close to the outer wall, i.e., at 

r*=0.1 in Fig. 7(b), where none of the five models 

agree well with the experimental data. At θ=60° 

(shown in Fig. 7(c)), the differences between the 

models are mainly found at in close to the inner 

wall, at r*=0.9. Due to the secondary motion, the 

low-momentum fluid particles are accumulated in 

this region. The NH model has obtained the worst 

prediction, as compared with the other four models 

and the experimental data. Such transport and 

accumulation of low-momentum fluid particles by 

secondary motion (see Fig. 6) are carried on until 

the downstream of the curved section, at r*=0.7 and 

0.9 in the cross-section XH=0.25 (Fig. 7 (d)). The 

streamwise velocity becomes very low in this 

region and flow separation is possibly to occur 

locally, although it is not clearly observed in the 

present calculation. The SST predicted this trough 

of streamwise velocity quite well, and so did the 

low-Re k-ε models except the NH. The SKE also 

predicted the streawise velocity correctly at r*=0.7, 

but at r*=0.9, the predicted velocity by the SKE is 

quite lower than the measured value.  

Figure.8 shows the calculated radial component of 

the secondary velocity, V. As compared with the 

experimental data, it can be seen that the four k-ε 

models return almost the same results in these 

cross-sections again. In all these cross-sections, the 

SST performs the best in predicting the secondary 

motion. 

In Fig. 9, the predicted contours of the turbulent 

kinetic energy at XH=2.5 are compared with the 

corresponding measured data. It can be seen that the 

results of the low-Re k-ε models JL and LS are very 

similar to each other, and their predicted peak-value 

contour lines, scale of 1.4, are in good agreement 

with the experiment, either in terms of the location 

and the scale value. Such peak-value contour line is 

also predicted well by the SST. However, the low 

turbulent kinetic energy zones in near the middle of 

outer wall and in near the inner wall are over 

predicted by the SST; its predicted values are lower 

than the measured. On the other hand, the 

predictions for these low value zones using JL and 

LS are fairly good and acceptable. The NH model 

under predicted the peak value of the kinetic energy 

though the location of the peak is also 

approximately correct. The SKE over predicted the 

peak of the kinetic energy; the area enclosed by the 

peak-value contour line predicted by SKE is far 

larger than the experimental result of Taylor et al. 

(1982).  
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(c) θ=60                                                                        (d) XH=0.25 

Fig. 7. Predicted streamwise velocity of Case A. 
(  JL;  LS;  NH;  SST;  SKE;  Taylor et al. 1982) 

 

 

In the literature, the turbulence quantities for the 

present Case A are seldom presented in evaluating 

the turbulence models. The predicted contours of 

the turbulence cross-correlation and fluctuating 

velocities, namely, u v   and u  in the cross-section 

XH=2.5 are shown in Fig. 10 and 11, respectively, 

and are compared with experimental data. For the 

cross-correlation u v   shown in Fig. 10, it seems all 

the results of the five models have basically agreed 

with the measured distribution, the result of the LS 

seems the best in amongst of the five models. For 

the fluctuating intensities u shown in Fig. 11, the 

situation is quite similar to the turbulent kinetic 

energy, shown in Fig. 9. The low-Re k-ε models JL 

and LS return quite similar contours, which are in 

good agreement with the experiment, either in terms 

of the location and the scale values. The SST also 

has predicted the peak values of the intensities well. 

However, the low value zones in near the middle of 

outer wall and in near the inner wall predicted by 

the SST are lower than the measured. The predicted 

fluctuating intensities by the NH model are fairly 

acceptable as compared with the experimental data. 

The value levels of the contour lines predicted by 

the SKE are generally higher than the experimental 

results.  
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Fig. 8. Predicted radial velocity of Case A 

(  JL;  LS;  NH;  SST;  SKE;  Taylor et al. 1982). 

 

 

Case B 

Again, the predictions of both the mean flow 

velocity and turbulent fluctuating quantities are 

employed to evaluate the performance of turbulence 

models in modeling flow characteristics through the 

curved duct. Uref stands for the free-stream velocity  

at the reference station XH=-4.5. It is used to 

normalize the velocity and the Reynolds-averaged 

turbulence quantities. 

The predicted streamwise velocity profiles at some 

sections in Case B are shown in Fig. 12. To validate 

the present calculation, the numerical results by 

Raisee et al. (2006) are included; their calculation 

also used the LS model. Fig. 12 shows that present 

results of using the LS model have better 

agreements with the experimental data (Kim and 

Patel, 1994) than those by Raisee et al. (2006). The 

presently calculated profiles are more close to the 

measured results, possibly due to the high 

resolution numerical methods adopted here. There 

is very little notable difference between turbulence 

models in the predicted streamwise velocities, 

except at downstream of the bend and close to the 

side wall, as shown in Fig. 12 (d). At such location, 

none of the selected models makes a good 

agreement with the measured data. The early 

analysis shows that the secondary motion is 

strongest at about XH=0.5 and z*=2.5. The 

secondary vortex introduces a point of inflection in 

the velocity profile. According to the measured 

data, the maximum of the streamwise velocity 

appears at about Y/H=0.7. The result of the SST 

model seems agreed slightly better than the other 

four models with the experimental data.   

In Fig. 13, the predicted and measured turbulent 

kinetic energy profiles are compared. At the curved 

section θ=45° (Fig. 13(a) and (b)), it is seen that all 

selected models under-predict the peak turbulence 

kinetic energy near the outer wall (Y=0, i.e., the 

outer wall of the bend). In downstream of the 

curved section, at XH=0.5 and z*=2.5 (Fig. 13(c) and 

(d)), the discrepancies between predictions and 

experimental data are quite clear in near the outer 

wall of the bend. Only the tendency of variation is  
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(a) Experimental data (Taylor et al. 1982) (b) JL 
 

  
(c) LS (d) NH 

 

  
(e) SST (f) SKE 

Fig. 9. Predicted turbulent kinetic energy 
C/ ( )2

100k U contours at XH=2.5 for Case A. 

 

  
(a) Experimental data (Taylor et al. 1982) (b) JL 

 

  
(c) LS (d) NH 

 

  

(e) SST (f) SKE 

Fig. 10. Predicted contours of 
C' ' / ( ) 2

1000uv U at XH=2.5. 
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(a) Experimental data  (Taylor et al. 1982) (b) JL 

 

  
(c) LS (d) NH 

 

  
(e) SST (f) SKE 

Fig. 11. Predicted contours of 
C/ ( )100u U at XH=2.5. 

 

 

 

approximately agree with the experiment. In the 

five models, the LS model produces a prediction 

relatively better than other models. Again, Raisee et 

al’s (2006) calculated results using the LS model 

are also included for comparison. Although the 

turbulence model for the two calculations is the 

same, the present calculation is more close to the 

measurement, possibly because of our high 

resolution code. 

The comparisons for turbulent stresses are shown in 

Fig. 14 and 15. Similar to turbulent kinetic energy, 

the results obtained by five models are basically 

alike in the core region in the upstream of the 

curved section. The LS model performs better than 

the other four models. Differences between the five 

models become noticeable near the outer and inner 

walls, especially in the curved section, at θ=45° for 

example. In downstream of the bend, the agreement 

between numerical and experimental results is 

generally poor, though the LS model results a 

slightly better prediction.  

4. CONCLUSION 

Even in nowadays, two-equation RANS models are 

still important choices for industrial purpose of 

predicting complex flow fields. In this paper, five 

widely used two-equation turbulence models are 

compared in predicting the developing flows in two 

90° curved ducts. The computational efficiency, the 

predicted streamwise and secondary velocities, the 

pressure distributions as well as the Reynolds-

averaged turbulence quantities resolved by these 

models are compared and validated against 

available experimental data. The main conclusions 

are summarized as follows: 

a. The numerical results indicate that the 

computation efficiency of the SKE is the highest 

among the five turbulence models for both the fully 

three-dimensional and the nominally two-

dimensional 90°-curved-duct flows. However, the 

predicting capability of the turbulence quantities by 

the SKE is generally poor. 

b. The velocity profiles predicted by the SST model 

show better agreements with experimental data than 

the other four models in the fully three-dimensional 

case. The model also obtains a slightly better 

prediction of the velocity profile in the secondary 

vortex center. But unfortunately, the predicting 

capability of the turbulence quantities by the SST is 

also relatively poor. 

c. In the two tested cases, the predicted results by 

the JL and LS models are very similar. As 

compared with available data, the two low-Re 

number models obtained better agreements than the 

SKE and the SST models. The LS model returns 

better predictions for the Reynolds stresses and the 

turbulent kinetic energy. Validations by 

experimental data show that the capability of 

predicting turbulence quantities is indeed a  
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Fig. 12. Predicted streamwise velocity profiles.  
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(c) XH=0.5, z*=0 (d) XH=0.5, z*=2.5 

Fig. 13. Predicted turbulent kinetic energy / ( )ref 
2

100k U . 
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(c) XH=0.5, z*=0 (d) XH=0.5, z*=2.5 

Fig. 14. Predicted cross-correlation ' ' / ( ) 2
1000refuv U . 
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(c)   XH=0.5, z*=0                                               (d)   XH=0.5, z*=2.5 

Fig. 15. Distributions of Reynolds normal stress 
2
refu'u' / U (×100) . 
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weakness for the five two-equation models. 

However, the LS model has still provided relatively 

more favorable predictions than the other four 

models in this paper. 
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