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ABSTRACT 

In this paper, Variational Iteration method with combining Pade approximation (Modified Variational 

Iteration Method-MVIM) is performed to Marangoni convection flow over the surface with buoyancy effects 

which is occurred gravity and external pressure. After the appropriate transformation of equations, we get the 

dimensionless form to solve numerically with modified variational iteration method. We compare the our 

results with well-known asymptotic expansion method used by Zhang Yan and Zheng Liancun and also 

compare with Fourth order Runge Kutta solution which are presented in tables. Very efficient and accurate 

results are obtained with presented method. 
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NOMENCLATURE 

f  velocity function 

g  gravitational acceleration 

Pr  Prandtl number 

S  interface 

T  temperature 

T  positive Temp. increment along the 

interface 

x  component of velocity 

( )eu x  velocity outside boundary layer 

y  component of velocity 

 

y  Cartesian coordinates normal to S  

x  Cartesian coordinate along 

 

I   Maranon mixed convection parameter 

  similarity variable 

γ   buoyancy forces parameter 

γ  surface tension 

γ  temperature function 

γ  Lagrange multiplier 

γ   stream function 

 
 

1. INTRODUCTION 

Marangoni convection flow is stimulated by 

variations of surface tension throughout liquid-

liquid or liquid-gas surfaces and it is important in 

many fields of nature and engineering. Fundamental 

treatment of Marangoni flow has been analyzed by 

(Gelles 1978; Napolitano 1982, 1979, 1978; Okano 

et al. 1989). Some of numerical studies depend on 

the Marangoni convection in various geometries 

have been presented by (Golia and Viviani 1985, 

1986), (Cristopher and Wang 2001), (Pop et al. 

2001), (Chamkha et al. 2006), (Arafune and Hirata 

1999), (Magyari and Chamkha 2008), (Aini et al. 

2012), (Hamid and Arifin 2014), (Remeli et al. 

2013), (Zhang and Zheng 2012), (Chen 2007) and 

(Al-Mudhaf and Chamkha 2005). 

In real applications, mathematical problems are 

usually modeled by nonlinear ordinary and partial 

differential equations such as physical and 

engineering applications. In generally nonlinear 

models may not be an exact solutions. Therefore, 

we try to find approximate or numerical solutions of 

these models as seen in references (Freidoonimehr 

and Rashidi 2015; Jhankal 2015). One of the most 

popular technique is variational iteration method 

that is very powerful. 

 

In this context, we will consider to extend the work 

studied by (Zhang and Zheng 2014) in order to find 

analytical solutions by using variational iteration 

method with combining Pade approximation called 

modified variational iteration method (MVIM). 

Also, we will give comparison between MVIM and 
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asymptotic expansion method (Zhang and Zheng 

2014). Additionally, unknown parameters of 

velocity gradient (0)f a   and temperature 

gradient (0) b   which obtained by MVIM is 

compared with Runge-Kutta method as shown in 

tables. The effects and variations of Pr,  and    on 

velocity and temperature profiles are presented 

graphically. All the calculations for solutions are 

provided by only one or two step iterations. Thus, it 

is found that the present results are in very good 

agreement with other known result as presented in 

Table 1, 2 and 3. 

2. MATHEMATICAL DESCRIPTION 

OF PROBLEMS 

We will consider two-dimensional Marangoni 

boundary layer flow with buoyancy effects due to 

external pressure gradient and gravity. It's occurs 

along an interface S  between two fluids as in Fig. 

1. 

 

 
Fig. 1. Schematic of the problem. 

 
Gravity g  occurs throughout on interface S , the 

surface tension changes with temperature. Viscous 

dissipation and interface tortuosity are negligible. 

Also the flow fields for two interfacing fluids are 

independent (Golia and Viviani 1985, 1986; Zhang 

and Zheng 2014).  

Considering these information, we can write the 

governing equations for the Marangoni boundary 

layer with water based fluid as 

0
u v

x y

 
 

 
 

2

2

u u du ueu v u T
ex y dx y


  

    
  

                (1) 

21

2Pr

T T T
u v

x y y

  
 

  
 

Also boundary conditions are given as 

5
 0, , 0,

0

u T
if y v T T x

y x

 
    

 
 

3
 , ( ) , 0

0
if y u u x u x T

e
                (2) 

where u  and v  are the velocity components 

corresponding to x  and y  axis respectively. 

( )u xe  is external velocity, T  is fluid temperature, 

  is Marangoni mixed convection parameter. Also, 

if 1 , then buoyancy force is available and if 

1 , then buoyancy force is not available. 

Additionally, variation of surface tension as 

 , .
d

T TT m T m
dT


                       (3) 

By using these facts and boundary conditions, we 

can write the transform variables as 

54 , ( )0 0

24( , ) ( )0

0 4, 0
0

T xy T T x

x y T x f

u
r T k

T

  



  

 

 

                 (4) 

Combining (1)-(4) and considering the literature 

(Golia and Viviani 1985, 1986; Chamkha et al 

2006; Al-Mudhaf and Chamkha 2005) we obtain 

the main ordinary differential system which is the 

reduced form of (1) as 

 

 

2 2
3 2 3 0

Pr 2 5 0

f f ff r

f f



  

       

    

                (5) 

and boundary conditions turn into 

(0) 0, ( ) 1, 

(0) 5 1,

(0) 1, ( ) 0

f f r

f k

 

   

  

  

                 (6) 

Here, prime denotes the derivatives with respect to 

 . 

3. MODIFIED VARIATIONAL 

ITERATION METHOD (MVIM) 

Variational iteration method (VIM) is one of the 

powerful mathematical tool to solve various kinds 

of linear and nonlinear problems as shown some of 

in ref. (He 2007, 1999, 1997; He and Hong 2007). 

In order to basic definition of VIM, we consider the 

following general nonlinear problem (He 2007, 

1999, 1997; He and Hong 2007) 

( ) ( ) ( ) ( )L u x R u x N u x g x                         (7) 

where 
md

L
mdx

 , m  and R  are linear operators, 

N  is a nonlinear operator and g  is given 

continuous function. According to the originally 

VIM, we construct the correction functional as 
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 

 

 

( ) ( )
1

( )

( )
           ( )

( )0

( )

u x u x
n n

L u sn
x R u sn

s ds
N u sn

g s






 
 
 

   
 
  

                (8) 

Here, 0, n   is a Lagrange multiplier (Inokuti et 

al. 1978), un  is considered as a restricted variation, 

i.e. 0un  . If we apply the variation to correction 

functional (8) by using variational analysis, then we 

write down as 

 

 

 

( ) ( )
1

( )

( )
( , )

( )0

( )

u x u x
n n

L u sn
x R u sn

x s ds
N u sn

g s

 

 




 
 
 

   
 
  

                 (9) 

 ( )
( ) ( , )

( )0

0

x K u sn
u x x s ds

n g s
 

 
    

 



              (10) 

From solution of Euler-Lagrange problem shown in 

(10), we determine the Lagrange multiplier and 

successive iterations ( ),   0nu x n   are obtained by 

using Lagrange multiplier and initial approximation 

0u  that satisfy, at least, the initial and boundary 

conditions with possible unknowns. Consequently 

the exact solution of (7) can be obtained by using 

(He 2007, 1999, 1997; He and Hong 2007) as 

( ) lim ( )n
n

u x u x


                 (11) 

3.1 Pade Technic 

Some techniques exist to increase the convergence 

of a given series. Among them so-called Pade 

Technique is widely applied (Baker and Morris 

1981). 

Supposed that a function ( )y x  is presented by a 

power series 

0

nc xn
n





                (12) 

 ,L M  Pade approximant is 

 0 1 1

0 1

L
L L M

M
M

g g x g x
O x

h h x h x

   


  
              (13) 

which agree with (12) as far as possible. Here there 

are 1L  independent numerator coefficients and 

M  independent denominator coefficients, so 

making 1L M   unknown coefficient in all. This is 

suggested that normally  ,L M  ought to fit the 

power series (12) namely 

 

0 1

0 1

1

0

              

L
L

M
M

L M

g g x g xnc xn
h h x h xn

O x  

   
 

  



              (14) 

If the equations equate with respect to 
1 2
, , ...,

L L L M
x x x

  
, we write down 

1 1 2

0 1

2 1 3

0 2

1 1 0

             0

             0

                              

0

M L M M L M

L

M L M M L M

L

M L M L L M

h c h c

h c

h c h c

h c

h c h c h c

    



    



  



  



  

   

       (15) 

If 0, 0n cn   for consistency. Since 0 1h  , (15) 

become a set of M  linear equations for M  

unknown denominator coefficients and also the 

numerator coefficients 1 2, ,..., Lg g g  follow 

immediately from (14) by equating the coefficients 

of 
21, , ,..., L Mx x x 

 as 

 

0 0

1 1 0 1

2 2 1 1 2 0

min ,

0

,

,

,

                      

L M

L L n L n

n

g c

g c c h

g c h c h c

g c h c 





 

  

  

             (16) 

Thus, (16) normally determine the Pade numerator 

and denominator. The  ,L M  Pade approximant is 

constructed which agrees with 

0

nc xn
n





, through 

order 
L Mx 

. 

In order to find the infinite boundary conditions in 

(6) and increase convergence and efficiency of the 

series solution (11), we apply the Pade 

approximation technic to (11). Therefore, we 

combine the variational iteration method and pade 

technic so called modified variational iteration 

method (MVIM). 

4. SOLUTION PROCEDURE OF 

PROBLEMS 

Now, we will apply our proposed method MVIM to 

eqs. (5)-(6) to obtain analytic solutions. 

Let, assumed that  0f a   and  0 b   for the 

boundary conditions (6). By using these cases, the 

initial approximations  0f   and  0   which 

provided boundary conditions (6) are considered as 
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 

 

2

 and
0 2

1
0

f a

b


 

  

 

 

               (17) 

where ,a b  are unknown coefficients that will be 

obtained by applying boundary conditions (6). By 

using the variations theory (9)-(10), Lagrange 

multipliers are found as follow respectively 

1 2( )  and ( )
2

s sf                     (18) 

Thus, Lagrange multipliers (18) put into (8), then 

successive iteration equations are written as 

   

 

 

( ) ( )
1

23( )

1 2 2( ) 2 ( ) 3
2

0

f f
n n

f s f sn n

s f s f s r dsn n

sn

 









  
 
 

     
 
 
 

              (19) 

and 

   

 

 

   

1

( ) 2 ( )
Pr0

5

n n

sn

s dsf s sn n

f s sn n

   




 






 
 

     
       

              (20) 

By applying (17) to (19)-(20), we obtain the 

solutions of (5) respect to boundary conditions (6) 

as follow 

 

1

1 2 36

2 1 12

2 2

f a

a



   

 
  
   
 
  
 

 

1 1 4

6 24

3Pr 2 5

24 20 60

2Pr 2 1
6144 24

1
Pr

240

a b

a a a a

a

ba

 

 


 





 
    
 

   
    
 
 

 
    

     
 
  
 

              (21) 

5 2
( ) 1 Pr

2

5Pr Pr 3

6 2

2 25( Pr Pr)

424

25Pr( 1) Pr

8 3

b a

ab

a

a b

   







  

 
   
 

 
 

 
  

 
  
 

              (22) 

2 2 213(Pr Pr ) Pr

40 5

23 Prb Pr 2Pr

20 6

a b b a b

a a





  
 
 
 

    
 

 

2 2Pr 2Pr 11 Pr

36 72

24 Pr Pr 6

40

2 3 211Pr Pr

24

a

a b b

a a






  
 
 
 

    
 
 
 
  
 

 

For (21) and (22), iteration process continues 

sufficiently (as seen (11) ). 

In the series solutions (21) and (22), the unknown 

constant ,a b  which are denoted to velocity gradient 

and temperature gradient respectively, are found by 

applying very efficient approximation called Pade 

Technique (12-16) and infinite boundary conditions 

(6). 

For numerical values of 1 , Pr 1 and 1  

(opposing buoyancy force), we find unknown 

constants as 

 

 

0 1.412274065

0 2.803862335

f a

b

  

   
              (23) 

From (23) and put 1 , Pr 1 and 1  into (21-

22), then numerical solution of (5) with MVIM is 

found as follow respectively, 

  3
1.412274065 0.3305923508

4 5    0.1185514135 0.02117728081

16 2    0.00410565956
2

f   

 

 

 

 

  

 

  2
1 2.803862335 3.530685162

3 4         2.813244362 1.763385808

5 6         1.052008622 0.7107541919

         

   

 

 

  

 

 

   

 

5. RESULTS And DISCUSSION 

The dimensionless form (5) and (6) of Marangoni 

boundary layer flow equations (1) and (2) are 

considered. These equations have been solved by 

modified variational iteration method (MVIM) and 

very efficient and accurate results are obtained by 

MVIM. 

For both opposing and favorable buoyancy effected 

Marangoni flow with various values of Prandtl 

number (Pr) and Marangoni mixed convection 

parameter  , our results are compared with well 

known asymptotic iteration method (Zhang and 

Zheng 2014) and fourth order Runge-Kutta method 

in Table 1,2,3. 
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Table 1 Comparison of velocity and temperature gradients values for buoyancy force effects 

1    MVIM Ref (Zhang & Zheng) Numerical1 

  Pr  (0)f   (0)  (0)f   (0)  (0)f   (0)  

1 1 1.412274065 -2.803862335 1.3770953 -2.9458683 1.4113699382952547 -2.78948714536900289 

1 2 1.405165167 -3.976787667 1.3598498 -4.2130978 1.4002194673439794 -3.97480693986123512 

0 0.5 1.332167618 -1.880343197 1.3287628 -2.0611599 1.3531950142211835 -1.90716896300225147 

2 0.5 1.482416887 -2.056431944 1.4573970 -2.0884821 1.4889922387434242 -1.99825843240349954 

1    MVIM Ref (Zhang & Zheng) Numerical1 

  Pr  (0)f   (0)  (0)f   (0)  (0)f   (0)  

1 1 1.287203220 -2.640556677 1.2768744 -2.8990230 1.2917523393322974 -2.67069088539676658 

1 2 1.315836672 -3.940255478 1.2981999 4.1678960 1.3040071102798589 -3.83725279754441573 

1 3 1.334733660 -4.946965767 1.3153168 -7.9219190 1.3105560074629494 -4.7380888016884386 

2 1 1.211855517 -2.528374125 1.2038062 -2.8498573 1.2264015411187497 -2.60354476159533110 

3 1 1.122504874 -2.387794592 1.1230572 -2.8120538 1.1562579654494212 -2.52953330807238563 
1Fourth order Runge Kutta 

 
Table 2 Comparison of Temperature and Velocity gradients for various values of Pr and   for 1    

1    MVIM Numerical1 

  Pr  (0)f   (0)  (0)f   (0)  

0.5 1 1.385624006 -2.739988206 1.3826578393120732 -2.76143002511236446 

0.5 1.5 1.381628631 -3.392163066 1.37926876062386006 -3.40135895617698658 

0.5 2 1.378716936 -3.925101657 1.37695951454900345 -3.94198486617161148 

0 1 1.356249272 -2.649314461 1.35319501463357117 -2.7323451676649424 

1.5 1 1.441773170 -2.858328650 1.43938712832371896 -2.8166003984916661 

2 1 1.426551360 -2.829817768 1.46675860211244036 -2.84284309058585061 

 1Fourth order Runge Kutta 

 
Table 3 Comparison of Temperature and Velocity gradients for various values of Pr and   for 1  

1    MVIM Numerical1 

  Pr  (0)f   (0)  (0)f   (0)  

0.5 1 1.319306864 -2.686759875 1.32291768517141661 -2.70213587974090652 

0.5 1.25 1.324084466 -3.053502073 1.32489599762663102 -3.03489176113386927 

0.5 1.5 1.328280246 -3.385784692 1.32647661498123703 -3.3364729195401881 

0 1 1.346509763 -2.72521503 1.35319502837390648 -2.73234497964024126 

1.5 1 1.251247832 -2.587702322 1.25961368372507465 -2.63787843974779923 

2 1 1.211855517 -2.528374125 1.22640155716212185 -2.60354451673469889 

 1Fourth order Runge Kutta 

 
It is evident from Table 1 that our results better than 

the results in ref. (Zhang and Zheng 2014) with 

compared numerical method. Also from Table 2 

and 3, it tells us that our presented method (MVIM) 

is efficient and powerful mathematical tool. 

Fig. 2-3 demonstrate the variations of velocity 

profiles for both opposing 1  and favorable 

1 buoyancy forces with different values of 

Prandtl Number (Pr). 

Also, Fig. 4-7 show the variations of temperature 

profiles as the same meaning of Fig. 2-3 with 

various values of Pr and Marangoni mixed 

convection parameter   respectively. 

6. CONCLUSION 

In this paper, we consider the nonlinear ordinary 

differential equations which corresponds to 

Marangoni boundary layer flow with buoyancy 

effects. These equations are solved by Modified 

variational iteration method analytically. The 

velocity gradient  0f  , temperature gradient 

 0  as well as the temperature and velocity 

profiles are analyzed and compared for buoyancy 
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opposed and buoyancy favorable cases. 

Consequently, results show that MVIM is very 

powerful and convenient method for analytical 

and numerical solutions for nonlinear flow 

equations. 

 

 
Fig. 2. Prandtl Number effects on velocity profile 

for eqn. (5) with opposing buoyancy forces. 

 

 
Fig. 3. Prandtl Number effects on velocity profile 

for eqn. (5) with assisting buoyancy forces 

 

Fig. 4. Prandtl Number effects on temperature 

profile for eqn. (5) with opposing buoyancy 

forces. 

 

 
Fig. 5. Prandtl Number effects on temperature 

profile for eqn. (5) with assisting buoyancy 

forces. 

 

 
Fig. 6. Marangoni convection parameter effects 

on temperature profile for eqn. (5) with 

opposing buoyancy forces. 

 
 

 
Fig. 7. Marangoni convection parameter effects 

on temperature profile for eqn. (5) with assisting 

buoyancy forces. 
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