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ABSTRACT 

Turbulent fluid flow and heat transfer in an asymmetric diffuser are important in the context of the power 

plant engineering such as gas turbine, aircraft propulsion systems, hydraulic turbine equipment etc. In the 

present study, an experimental investigation on the forced convective heat transfer considering turbulent air 

flow in an asymmetric rectangular diffuser duct has been done. The experimental setup considered for the 

analysis consists of a diffuser at different bottom wall temperatures and inlet conditions. The air enters into 

the diffuser at a room temperature and flows steadily under turbulent conditions undergoing thermal 

boundary layer development within the diffuser. Efforts have been focused to determine the effects of 

bottom wall heating on the recirculation bubble strength, thermal boundary layer, velocity fields, 

temperature profiles etc. The distribution of the local average Nusselt number and skin friction factor in the 

whole flow fields have been critically examined to identify the significance of bottom wall heating effects 

on the overall heat transfer rates. 

 

Keywords: Rectangular diffuser; Turbulent flow; Bottom wall heating; Forced convective heat transfer; Skin 

Friction factor; Nusselt number. 

NOMENCLATURE 

fC  coefficient of skin friction 3T  343 

d  Inlet height of the diffuser )( XbT  bulk temperature of fluid at certain 

location 

dt+/dy+ temperature gradient of the upper and lower 
wall of the diffuser at certain location 

LBT ,
 temperature at the thermal boundary 

layer 

dy
du  velocity gradient of the upper and lower wall 

of the diffuser 
wallT

,Tw
 temperature of lower wall of the 

diffuser 

g  acceleration due to gravity u  velocity at certain location and height 

Nu  average Nusselt number avgu  average velocity of fluid 

x
Nu  local Nusselt number V  center line velocity of fluid 

Re  Reynolds number p  difference of stagnation and static 

pressure 

S  
the distance of the station measured from the 

inlet end of the diffuser air  density of air 

1T  absolute laboratory temperature   co-efficient dynamic viscosity of fluid 

at room temperature 

2T  323  X Total length of the diffuser, m 
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Ub bulk average velocity β thermal expansion coefficient 

τ wall wall shear stress α thermal diffusivity 

k von Kármán constant ν kinematic viscosity of air 

Bi additive constant Tin Inlet flow temperature 

U+ normalised mean velocity  qcon 
average convection heat flux 

transferred to the fluid 

y distance from the bottom wall hav average heat transfer coefficient of air 

T+  normalized form of temperature kair therma conductivity of air 

T 
local temperature at different height at any 

station 
Ra* 

Rayleigh number considering uniform 

heat flux 

Gr Grashof number Ra Rayleigh number 

 

 
   

1. INTRODUCTION 

In industrial applications turbulent convection flow of 

viscous fluids is very common phenomenon. In gas 

turbine engine, air is compressed in diffuser duct just 

upstream of the combustor. Flow separation in a 

diffuser causes reduction in engine performance as 

stated in the works of the Cherry et al. (2006). Obi et al. 

(1993) and Buice et al. (2000) thoroughly measured the 

mean velocity field and turbulent parameters. RANS 

simulation of the diffuser flow was performed by 

Durbin (1995) and Iaccarino (2001). A hotter plate 

attached with a colder stationery fluid creates a mass 

gradient within the domain which was explained in the 

works of Bejan (1993). Devia et al. (2000) analyzed the 

distribution of the heat transfer coefficient in natural 

convection by means of an optical technique. 

Numerical Analysis made by Friedrich et al. (2001) had 

shown the behaviour of the fluid subject to stable 

thermal stratification under the conditions of convective 

heat transfer in a two dimensional model. The thermal 

conductivity of the plexiglass side walls is much higher 

than that of the air as described by Lin et al. (1996). 

Incropera et al. (1985, 1985, 1987 and 2007) observed 

numerically the onset and qualitative picture of the 

buoyancy driven secondary flow on the bottom plate. 

Lewins (2004) determined the thermal boundary layer 

and Huang et al. (1996) numerically investigated the 

buoyancy induced transitional flow structures and heat 

transfer in mixed convective flow of air in a bottom 

heated inclined rectangular duct. Morcos et al. (1986) 

experimentally estimated the local Nusselt number 

while  Maughan et al. (1987), Chang et al. (1998) 

investigated the effects of the aspect ratio on the 

characteristics of the longitudinal vortex air flow in a 

bottom heated horizontal rectangular duct by carrying 

out flow visualization and temperature measurement. 

Huang et al. (1995) had studied numerically the effects 

of Reynolds numbers  on the vortex flow structure and 

thermal behavior in a buoyancy induced mixed 

convective air flow passing through a bottom heated 

rectangular horizontal duct. Chiu et al. (1987) gave the 

importance on the experimental processes for analysis 

of the flow and thermal characteristics due to the limited 

availability of computation process. Maughan et al. 

(1990) attempted to solve the vortex flow numerically. 

Lin et al. (1996) experimentally observed the buoyancy 

induced spatial and temporal flow transition and the 

heat transfer methods in a mixed convective steady air 

flow passing through a bottom heated horizontal 

rectangular duct. Elementary idea of buoyancy induced 

flow transition is important for the cooling of micro 

electronic equipment and transfer of heat in compact 

heat exchanger as discussed in the works of Incropera 

(1988) and Kays et al. (1984). Mori et al. (1996), 

Ostrach et al. (1975, 1976), Hwang et al. (1976) and 

Kamotani et al. (1979) experimentally measured the 

characteristics of steady longitudinal vortex rolls in a 

channel with bottom wall of higher uniform 

temperature than the top. Shuja et al. (1996) compared 

the experimental data with the numerical works and 

concluded that the Nusselt numbers are dependent on 

the Reynolds numbers. In an experimental work, 

Bhattacharjee et al. (2011) put efforts to measure the 

velocity profiles, pressure fields in a section 

perpendicular to the axis of a rectangular diffuser and at 

a particular diffuser angle for different inlet flow 

conditions. In another experimental work, 

Bhattacharjee et al. (2010) investigated the effect of two 

baffles of varying heights on the turbulent flow in an 

axi-symmetric diffuser. Recently, Majumder et al. 

(2014) have carried out an experimental study of the 

turbulent air flow through a rectangular diffuser using 

two equal baffles positioned at different axial distances 

from inlet of the diffuser duct. Study on the temperature 

gradients in the near wall region had been done by 

Toutant et al. (2013). According to the statements made 

by Morinishi et al. (2007) and Wu et al. (2010) the 

turbulent boundary layer with heat transfer remains an 

incompressible flow in the small temperature gradient. 

The mean and the turbulent profiles are considered to 

be asymmetric. Nicoud (1998) studied on the property 

variations considering a low mean Reynolds number. 

Serra et al. (2012, 2012, and 2012) realized LES 

parametric studies frorn different temperature ratios and 

Reynolds numbers. Sekimoto et al. (2011) stated that 

the mean secondary flow is driven by turbulence as well 

as the buoyancy in the case of thermal square-duct 

turbulence under the action of gravity. Ma et al. (2007) 

studied the buoyancy effects on statistics of square-duct 

turbulence by direct numerical simulations (DNS). The 

works of Kong et al. (2000) gave the similarity between 

the wall-normal heat flux and the Reynolds stresses. 

The theory correlates between the temperature and the 
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Fig. 1. Schematic view of Experimental Setup. 

 
stream wise velocity fluctuations. Investigations on 

scalar transfer in turbulent channel flows at different 

Prandtl numbers were made by Tiselj et al. (2001) and 

Kozuka et al. (2009).The effect of Reynolds numbers 

on the scalar transfer and the variations of Prandtl 

numbers in channel flows were examined by Abe et al. 

(2004). Li et al. (2013) studied the transitional and 

turbulent thermal boundary layers. The studies on the 

scalar transport revealed the turbulent structures 

including the velocity and temperatures variations in 

flows with different thermal boundary conditions and 

Prandtl numbers. Recently, Zonta et al. (2012) 

examined the turbulent channel flow with wall heating 

by means of direct numerical simulations (DNS). They 

found the alteration of turbulence production and 

dissipation of the wall bounded flow. Lee et al. (2013) 

demonstrated the mechanism of skin-friction 

reduction due to the temperature dependent viscosity.  

 

 

Fig. 2. Geometry of the test section. 

 

 
Fig. 3. Top view of the test section geometry. 

 

In the present experimental study consideration is 

given on the flow characteristics and temperature 

measurement for turbulent forced convection flow in 

a rectangular diffuser. The conditions in the 

experimental work are taken as mixed convective 

steady turbulent air flow in a bottom heated 

horizontal rectangular diffuser. The effects of 

dimensionless parameters such as local Nusselt 

numbers and Reynolds numbers for this type of flow 

have been investigated. 

2. EXPERIMENTAL SETUP AND 

MEASUREMENT TECHNIQUE 

The experimental set up is schematically shown in the 

Fig. 1. It consists of two portions: (i) diffuser 

combined with air blower and power supply controller 

and (ii) measuring bench fitted with different 

apparatus for velocity and temperature. The 

experiment has been conducted in a rectangular 

diffuser of blow down type fitted with a blower. 

Measurements have been taken in the mid stream 

plane along X-X axis of Fig. 3. Air is introduced inside 

the diffuser by the blower over the hot copper plate and 

thus a velocity as well as thermal boundary layer is 

generated. The diffuser is a gradually diverging 

rectangular section of 1.47 m length (including the 

redevelopment channel) and the inlet cross section is 

0.2 × 0.04 m. with the constant diffuser inclination 

angle of 10° upwards to the horizontal axis. The lower 

plate is made of 0.73 × 0.2 × 0.002 m of high purity 

rectangular copper plate heated electrically by DC 

power supply transferred from a variable voltage 

transformer. The top wall is constructed with 

plexiglass for better visibility. The side walls are built 

up with transparent glass sheet for preventing heat 

loss. The electrical power input is controlled by a 

Variac. A number of surface thermocouples (K-type 

made of Nickel –Aluminium) are fixed to the upper 

surface of the plate maintaining an interval of 0.03 m 

between them to measure the temperature of the 

copper plate at various locations. Every thermocouple 

is shielded against radiation. For preventing backward 

heat flow, insulation is provided below the copper 

plate. The local surface temperature of the base plate 

is measured by a Digital Temperature Indicator at 
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which all the outputs of the thermocouples are 

connected. The measurement of heat transfer is carried 

out under isoflux steady state condition. The working 

fluid in the diffuser is air, supplied by a centrifugal 

type variable speed blower (Model No: DDEI-00164) 

fitted with a D.C. motor. A developing channel is 

formed which is attached with the inlet of the diffuser. 

The dimension of the developing section is 0.2 × 0.2 × 

0.83 m. The velocities of air are measured inside the 

diffuser using Pitot static tube already calibrated 

connected with a Pressure Transducer (Range-± 10000 

Pa, Air Velocity: 2 to 100 m/s). The probe made of a 

thyristor is used for measuring temperature of ambient 

air and instantaneous air temperatures at different 

heights inside the diffuser.  

The working Newtonian fluid is air of density ρair 

=1.164 kg/m3 , dynamic viscosity µ= 1.983× 10-5 Pa-

s and kinematic viscosity of air  ν= 1.7 × 10-5 m2 /s 

at room temperature T1 = 303K and barometric 

pressure = 101.6 KPa. The average velocity at inlet 

Uav is taken as 15.308, 16.978, 22.874 m/s 

(Re=3.594×104, 3.896×104 and 5.371×104 

respectively). The velocity distribution curves are 

obtained at different stations. The equations for the 

density, velocity, Reynolds numbers, Nusselt 

numbers, co-efficient of skin friction and the thermal 

boundary layer of the working fluid flowing through 

the diffuser are hereby given below:  

sm
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𝑈+ = 
1

𝑘
 𝑙𝑛𝑦+ + 𝐵𝑖, where 𝑈+ = 𝑢𝑎𝑣𝑔/𝑢∗  ,  

𝑦+ =  𝑦 
𝑢∗

𝜈
  and  u*

2 =τ wall / ρ air                           (6) 

T+ = T/ Tb                  (7) 

Gr = gβ(Tw –Tin ) d3 /ν2                                          (8) 

Ra= gβ(Tw –Tin ) d3 /ν α                                         (9) 

Ra* = gβqcon d4/ν α kair                                         (10) 

qcon = hav (Tw –Tin )                                               (11) 

3.    RESULTS AND DISCUSSIONS 

Validation Study of Skin Friction 

Coefficient: 

The experimental results shown in Fig. 4 of 

turbulent air flow through the asymmetric 

rectangular diffuser heated at the bottom horizontal 

wall used in the experiment have been validated 

with the published work of Buice et al. (2000) and 

Lan et al. (2009). The non dimensional value using 

the ratio of station distances commencing from the 

inlet section and height of inlet section of the 

diffuser are presented in the two dimensional co-

ordinate system in which X-axis is parallel to the 

upstream flow and Y- axis is normal to the X-axis. 

The centre-line velocity at the inlet is 1.14Ub where 

Ub is 13.44 m/s. The Reynolds number is 


 dU bair  or 3.594 × 104. The length of the 

settling chamber is 83 cm and the inlet height of the 

rectangular diffuser is 4 cm, so the ratio of the 

length of the settling chamber and the height of the 

inlet section is 20.75 which indicate the persistence 

of developed flow at the outlet of the diffuser. A 

uniform and constant heat flux is supplied at the 

lower horizontal wall 0.74m away from the inlet of 

the diffuser, the inclination angle of which is kept 

fixed at 10◦ in conformity with the set up of Buice 

et al (2000). The study is carried over at an 

isothermal condition at the temperature of 323K. 

The variations of coefficient of skin friction at 

different stations in the diffuser are seen with full 

agreement of the data provided by Buice et al. 

(2000) and Lan et al. (2009) which are clear from 

the Fig. 4. A critical observation of the skin friction 

profile at the section of 6.10/ dS , 1000 × Cf = 

0.059, -0.13 and -0.13 in respect of experimental, 

Lan et al. (2009) and Buice et al. (2000) data 

respectively, which shows a little difference 

between the experimental value with that of  Lan et 

al. (2009) and Buice et al. (2000) data. At the station 

S/d= 26.25, 1000 × Cf = 0.05, 0.13 and -0.13 in 

respect of experimental, Lan et al . (2009) and 

Buice et al . (2000) data respectively. At the station 

S/d= 30 and 37 which are at the outlet of the diffuser 

1000 × Cf = 0.046, 0.25, 0.84 and 0.1, 0.4,0.337 in 

respect of experimental, Lan et al. (2009) and Buice 

et al. (2000) data respectively. These phenomena 

explore the idea of leaning out the differences 

between the experimental value and the values 

given by Lan et al. [2009] and Buice et al. (2000). 

It is observed that the Skin friction coefficient 

distribution of present experiment and that of Buice 

et al. (2000) and Lan et al. (2009) is matching very 

well.  
 

 
Fig. 4. Validation Study of Skin friction 

coefficient. 
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Fig. 5. Validation study of Nusselt number. 

 

Validation Study of Nusselt Number: 

The experimental study on Nusselt number 

distribution has been validated at Reynolds number 

equal to 3.594 × 104 and 343K. 

At the section x/S= 0.2 away from the inlet section 

of the diffuser Nu=91.955 and 96.77 in respect of 

experimental and Kurtbas (2008) data; so the 

observed value is closer the value of Kurtbas 

(2008) data. At S/X= 0.4, 0.6,  0.8 and 1 away 

from the inlet section, the present experimental 

values of Nu become 101.2, 93.1, 91.8 and 91.3  

whereas Nu data for Kurtbas (2008) are 96.77, 

87.366, 83.452, 80.91 and 77.696 which also 

explicitly declares the good agreement between 

the experimental value and the published data of 

Kurtbas (2008). This corresponds with the other 

values as well.  

Inlet velocities are measured for the calculation of 

Reynolds numbers which otherwise characterizes the 

nature of flow at the inlet. 

The lower wall of the horizontal diffuser is heated at 

about K323  and K343  respectively. Measurement 

has been taken along the mid-stream plane XX  to 

ensure two-dimensional flow. The velocity 

component at the walls equals to zero for assuming 

no-slip condition.  

From the Fig. 6(a) to Fig. 6(c), it has been 

observed that there is no recirculation zone. It has 

been observed that velocity with the application of 

heat is lesser than the velocity without heating. In 

each of the stations the axial velocities with and 

without the application of heat have been 

estimated. Fig. 6(d) to Fig. 6(i) illustrates the 

recirculation zones. Fig. 6(j) to Fig. 6(l) depicts the 

region of reattachment of flow. Recirculation is 

about to start from the distance of 0.7 m measured 

from the inlet section of the diffuser. However 

recirculation does not originate from this point; it 

starts little earlier. Similarly it is found that flow 

reattachment occurs at the distance of 0.8 m away 

from the inlet. Here also it can be stated that 

reattachment appears little later. The recirculation 

bubble length is calculated as 0.1 m and 

recirculation width is 0.0225 m approximately for 

the case of without heating. The strength of 

recirculation in the case of heating decreases 

considerably to approximately 30-35 % reduction. 

Usually recirculation means a zone of low 

pressure with lower velocity flow reversal zone. 

As this zone increases, so the main flow gets 

shortened and the flow velocities are also 

changing correspondingly. So the stream wise and 

cross flow velocity change and simultaneously the 

heat transfer particularly the convective heat 

transfer rate also changes. This is the effect of the 

recirculation on the heat transfer phenomena on 

the opposite wall. Reynolds numbers of the inlet 

flows are 3.594×104; 3.986×104 and 5.371×104 

respectively, the calculation being based on the 

inlet duct height and mean axial velocity. As the 

Reynolds number increases axial flow velocity 

also increases causing higher rate of heat transfer 

by convection. From the figures 7 (a) and (b), it is 

observed that coefficient of skin friction on the 

lower wall is decreasing faster than the upper wall. 

With the addition of heat, the coefficient of skin 

friction increases. At the recirculation zones the 

values of coefficient of skin friction are negative. 

The region of negative values of coefficient of 

skin friction agrees with the results under the 

zones of negative velocity which affirms the 

recirculation region. The coefficient of skin 

friction is estimated based on the mean velocity of 

air in the axial direction. The present experimental 

data of coefficient of skin friction over the zone of 

interest are correlated as the function of the 

Reynolds number and these correlations are valid 

in the Reynolds number 3.594×104, 3.986×104 and 

5.371×104 respectively. The correlations are 

obtained as seen from Fig. 8(a), Fig. 8(b) and table 

1. 

Table 2 shows the variations of wall shear stress and 

skin coefficient data using log law at the wall. A 

minor deviation of Skin friction coefficient is 

occurred considering log law at the wall comparing 

the data with velocity gradient. Table 3 shows the dt+ 

/dy+ data for evaluating Nusselt number considering 

logarithmic value of the normalized height and 

normalized temperature data at certain location 

(using thermal law at the wall). 

Figure 9(a) and Fig. 9(b) narrate the variation of 

Nusselt number with the station distance measured 

along the axial direction in the mid-stream plane

XX . At the thermally developing region of 

flow which starts from the distance 0.74 m away 

from the inlet section of the diffuser Nusselt 

number increases showing greater amount of heat 

transfer by convection and thereafter it becomes 

nearly constant at the downstream of the diffuser. 

This is because the thermal boundary layer is 

simultaneously developing along with the velocity 

boundary layer. When the thermal Boundary 

Layer gets fully developed then the temperature 

gradient becomes zero. So the Nusselt number 

practically becomes constant. Towards the 

downstream side of the diffuser the difference 

between the surface temperature and ambient 

temperature becomes larger causing Nusselt 

number to decrease. 
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Fig. 6. Axial Velocity profile at different location. 

 

 

Table 1 Correlation between 
fC  and Re 

Thermal Condition fC  at Lower wall 
fC at Upper wall 

Without heating 0.631Re-0.71 1.504Re-0.91 

K323  0.191Re-0.59 2.14Re-0.94 

K343  0.006Re-0.27 10.92Re-1.09 
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 Fig. 7. Coefficient of Skin Friction. 
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(a) (b) 

Fig. 8. Variation of Coefficient of skin friction with Reynolds Number. 

 

Table 2 τwall  and Cf  using log law at the wall 

 
C f  (Lower 

wall) 

τwall (Lower 

wall) 
Stations, m τwall (Upper wall) C f  (Upper wall) 

Re=3.594× 104 6.87× 10-4 9.36× 10-2 

S=0.65 5.72 × 10-2 4.19× 10-4 

S=0.7& 0.75 -3.41× 10-2 -2.50× 10-4 

S=0.8 3.41× 10-2 2.50× 10-4 

Re=3.986× 104 5.16× 10-4 8.65× 10-2 

S=0.65 5.74× 10-2 3.42× 10-4 

S=0.7& 0.75 -3.14× 10-2 -1.87× 10-4 

S=0.8 3.14× 10-2 1.87× 10-4 

Re=5.371× 104 2.31× 10-4 7.04× 10-2 

S=0.65 4.23× 10-2 1.39× 10-4 

S=0.7& 0.75 -2.51× 10-2 -8.23× 10-4 

S=0.8 2.51× 10-2 8.24× 10-4 

 

Table 3 dT+ /dY+ using log law at the wall 

 Stations, m Re=3.594× 104 Re=3.986× 104 Re=5.371× 104 

323K 0.65 0.545031 0.515962 0.487445 

0.7 0.562358 0.531349 0.502414 

0.75 0.580587 0.541385 0.505873 

0.8 0.577511 0.538524 0.507023 

343K 0.65 0.544071 0.515121 0.487285 

0.7 0.54552 0.51511 0.487141 

0.75 0.545973 0.515263 0.48804 

0.8 0.545823 0.518063 0.490763 
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Fig. 9. (a) Nusselt number variation 

along the lower wall at 323K. 

Fig. 9. (b) Nusselt number variation along 

the lower wall at 343K. 

 

  

Fig. 10. (a) Thermal Boundary Layer at 

323K. 

Fig. 10. (b) Thermal Boundary Layer at 343K. 

 

Table 4 q con at different locations 

 Stations, m Re=3.594× 104 Re=3.986× 104 Re=5.371× 104 

323K 

0.65 200 120 50 

0.70 900 500 300 

0.75 2000 2000 2000 

0.80 2000 2000 2000 

343K 

0.65 500 300 100 

0.70 1200 1200 500 

0.75 4000 4000 4000 

0.80 4000 4000 4000 

 

 

From Fig. 11 it is observed that with the increase of 

Reynolds number average Nusselt number increases 

due to the large forced convection of heat flow and 

turbulence of air. The average Nusselt number is 

estimated by integrating the local Nusselt numbers. 

From the experimental observation the correlations 

between average Nusselt numbers and Reynolds 

numbers for the air flow inside a diffuser are 

obtained at the temperatures K323  and K343  

as per the table 5. Table 4 shows the variation of 

average convection heat flux transferred to the air 

considering  hav = 100 W/m2K . 

The above mentioned correlations are valid for 

Reynolds numbers 3.594×104, 3.986×104 and 

5.371×104 respectively. Figs. 10(a) and 10(b) 

represent the thermal boundary layer profiles with 

respect to the axial distances at the temperatures 

K323  and K343  respectively. Thermal Boundary 

layer fluctuates more as the heated plate is 

approached. Fluctuation increases with the increase 

of temperature. As Reynolds number increases the 

thickness of Thermal Boundary Layer decreases. At 

the outlet of the diffuser the thickness becomes 

nearly constant. 

From the graphical interpretation of Fig. 6(d) and 

Fig. 6 (e) it has been noticed that the velocity with 

heating is little more than without heating. This 

discrepancy is not abrupt since the recirculation has 

been found to be preceded little earlier for the case 

of without heating. So it is expected that the 
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recirculation followed by the flow separation for the 

case of without heating will be terminating or the 

reattachment point will be shifted further 

downstream for the case of with heating.  

 

 
Fig. 11 Variation of Nusselt number with 

Reynolds number. 
 

Table 5 Correlation between Nusselt Number 

with Re 

 

Table 6 Gr and Ra at different temperatures 

 323K 343K 

Gr 1.44 × 105 2.88 × 105 

Ra 20928 41856 

Ra* 3.17 × 106 6.34× 106 

 

A major finding of the research work is whether the 

recirculation increases, remains constant or 

decreases for bottom wall heating. The present 

researcher found that the recirculation decreases with 

the increase of temperatures. This can be attributed 

due to the reason that the heating results in increase 

of viscosity and lowers the flow velocity. The 

augmented viscous effects are dominant particularly 

near the wall and this is responsible for this 

phenomenon. A higher velocity is quite capable of 

withstanding the adverse pressure gradient further 

downstream rather than a lower flow velocity, which 

is prone to separate due to inability to counter an 

adverse pressure gradient earlier. The ultimate 

consequence is the reduction of the recirculation 

bubble strength for the case of application of heat to 

the flow from the lower wall. 

4. DISCUSSION ON GRASHOF 

NUMBER AND RAYLEIGH 

NUMBER 

 Buoyancy and viscous forces in the fluid influences 

the transition in a free convection boundary layer. 

Grashof number is calculated as 2.88 × 105 whereas 

Rayleigh number is equal to 20928 and 41856 

considering the bottom wall temperature as 323K 

and 343K. When uniform heat flux is considered 

Rayleigh number changes to 3.17 × 106 and 6.34 × 

106  at the same conditions. Here thermal diffusivity 

𝛼 =1.17 × 10-4 m2 /s , β= 3.315 × 10-3 (1/K) and kair 

= 0.0264 W/mK. 

A greater value of Rayleigh number significantly 

describes the heat transferred by the convection 

method from the bottom most wall to the upper 

surface and consequently, the flow becomes 

turbulent.  

Fig. 12. Visualisation Study. 

5. VISUALISATION STUDY 

A high resolution camera is used for taking the 

photograph and white smoke is used as the indicator 

delivered from the inlet section of the diffuser. From 

the visualization study indicated by the red marking 

it has been seen that recirculation starts on the upper 

inclined wall at the upstream section of the diffuser 

and gets diminished at the downstream portion. The 

size of the recirculation bubble is nearly same as 

determined by the experimental process. With the 

application of heat the recirculation regime becomes 

somewhat decreased. 

6. CONCLUSIONS 

 Forced convective heat transfer inside a two 

dimensional rectangular asymmetric (10o axial 

inclination) with bottom wall horizontal 

diffuser is investigated experimentally. The 

experiment has been carried out under a 

uniform wall heat flux within of Reynolds 

numbers 3.594×104, 3.986×104 and 5.371×104 

and  temperatures of K323  and K343  

respectively. 

 The recirculation is generating at the upper wall 

of the diffuser. Before and after the 

recirculation the velocity profiles are turbulent 

like distributions. 

 With the application of heat recirculation 

strengths reduce appreciably.  

 With the increase of Reynolds number the value 

of coefficient of friction increases.  

 With the increase of Reynolds number, Nusselt 

number increases exhibiting more enhancement 

of heat transfer. The Nusselt number is more for 

higher temperature. 

 Empirical correlations are established for the 

Average Nusselt number and coefficient of 

Thermal 

Condition 
Nusselt Number 

323K Nu=0.019Re 0.723 

343K Nu=0.06Re 0.723 
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friction with Reynolds number which can be 

roughly used for the estimation of these 

quantities. 
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