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ABSTRACT 

In this paper, we study the combination between the inclinations of the enclosure and the magnetic field 

orientation on the oscillatory natural convection. For this, a cylindrical enclosure filled with electrically 

conducting fluid, has an aspect ratio equal to 2, and subjected to a vertical temperature gradient and different 

uniform magnetic field orientations were considered. The finite volume method is used to discretize the 

equations of continuity, momentum and energy. Our computer program based on the SIMPLER Algorithm 

has a good agreement with available experimental and numerical results. The time-dependent flow and 

temperature field are presented in oscillatory state, for different cases: inclination of the cylinder, under the 

effect of magnetic field in different orientations (δ = 0°, 30°, 45° and 90°) and the combination between them. 

The results are presented at various inclinations of the cylinder (φ = 0°, 30° and 45°), and the Hartmann 

numbers Ha ≤ 50. The stability diagrams of the dependence between the complicated situations with the value 

of the critical Grashof number Grcr and corresponding frequency Frcr, are established according to the 

numerical results of this investigation. The combination between the studied state has a significant effect on 

the stabilization of the convective flow, and shows that the best stabilization of oscillatory natural convection 

is obtained at the inclination of the cylinder φ = 30°, and the applied of radial magnetic field (δ = 0°). 
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NOMENCLATURE 

Ar aspect ratio  

B intensity of magnetic field 

Br radial magnetic field 

Bz axial magnetic field 

Cp specific heat at constant pressure of liquid  

FEMr dimensionless Lorentz force in the r-direction  

FEMz dimensionless Lorentz force in z-direction  

Fr dimensionless frequency pressure  

g gravitational acceleration 

Gr Grashof number 

H height of the cylinder 

Ha Hartmann number 

Nuavg average Nusselt number 

P dimensionless pressure 

Pr Prandtl number 

R radius of the cylinder, m 

r, z dimensionless coordinates 

T temperature 

u, v dimensionless radial and axial velocity 

 

α thermal diffusivity 

β thermal expansion coefficient 

δ orientation of the magnetic field 

θ dimensionless temperature 

ρ density of the fluid 

σ electric conductivity 

τ dimensionless time 

υ kinematic viscosity 

φ inclination of cylinder 

Ψ dimensionless stream function 

Subscripts 
c cold 

cr critical value 

h hot 

max maximum value 
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1. INTRODUCTION 

In recent years, various studies dealing with natural 

convection in inclined enclosures have been 

reported. These studies show that tilting the 

enclosure have a significant effect on the flow and 

heat transfer characteristics. For instance, in crystal 

growth processes from melts, it has been reported 

by Markham et al. (1984) that larger transports 

rated are obtained by tilting the ampoule. Motivated 

by this, Bontoux et al. (1986) have carried out a 

numerical and experimental investigation on three-

dimensional buoyancy-driven flows in a tilted 

cylinder (ampoule) with axial heating. Many other 

examples on the effect of inclination on natural 

convection flows have been reported by Delgado-

Buscalioni and Crespo del Arco (2001). For 

example, it has been proved that significant heat 

transfer enhancement can be obtained when the tube 

in a heat exchanger is optimally inclined (see Lock 

and Fu, 1993). Other applications of inclined 

configurations are the honeycomb solar collector 

plates (Wirtz and Tsheng 1970, 1980), spread of 

radioactive materials in long tilted liquid-filled rock 

fractures (Woods and Linz, 1992) and geophysical 

situations where a fluid is enclosed in narrow slots 

arbitrarily inclined to gravity (Cessi and Young, 

1992). Also, Cerisier and Rahal (1996) have 

employed inclined geometries in their experimental 

investigation on natural convection in enclosures 

with axial and lateral heating to study the 

interaction between longitudinal and transversal 

instabilities. 

Natural convection in enclosures under the effect of 

magnetic fields has also received considerable 

attention in recent years due to possible applications 

in many industrial and technological fields such as 

fusion reactors and crystal growth. For example, 

Oreper and Szekely (1983) have found that the 

strength of the magnetic field is one of the 

important factors in determining the quality of the 

crystal. This is related to the fact that during a 

crystal growth process, some turbulence in the 

natural convection currents occurs. This can be 

suppressed by the application of a magnetic field. 

Gelfgat and Bar-Yoseph (2001) studied numerically 

the effect of an external magnetic field with 

different magnitudes and orientations in a 

rectangular cavity. Stability diagrams for the 

dependence of the critical Grashof number on the 

Hartmann number were obtained by the authors. 

They showed that a vertical magnetic field provides 

a strongest stabilizing effect, and also that the 

multiplicity of steady states is suppressed by the 

electromagnetic effect. Bouabdallah and Bessaïh 

(2012) studied the effect of a magnetic field 

orientation on fluid flow and heat transfer during 

solidification from a melt in a cubic enclosure. They 

have shown a strong dependence between the 

interface shape and the intensity and orientation of 

magnetic field and the strongest stabilization of the 

flow field and heat transfer are shown when the 
magnetic field is oriented vertically (γ = 90°). 

Similar results have also been obtained by Battira 

and Bessaïh (2008). Oudina and Bessaïh (2014) 

studied the effect of a magnetic field orientation in a 

cylindrical configuration filled with a low-Prandtl 

number electrically conducting fluid. Their study 

confirms the possibility of stabilization of a liquid 

metal flow in natural convection by application of a 

radial magnetic field. Ozoe and Maruo (1987) 

investigated numerically the natural convection of a 

low Prandtl number fluid in the presence of a 

magnetic field and obtained correlations for the 

Nusselt number in terms of Rayleigh, Prandtl and 

Hartmann numbers.  Garandet et al. (1992) 

proposed an analytical solution to the governing 

equations of MHD to be used to model the effect of 

a transverse magnetic field on natural convection in 

a two-dimensional cavity. Seth and Ghosh (1986) 

proposed unsteady hydromagnetic flow in a rotating 

channel in the presence of an inclined magnetic 

field. Ghosh (1991) proposed a note on steady and 

unsteady hydromagnetic flow in a rotating channel 

in the presence of an inclined magnetic field. After, 

they proposed a note for unsteady hydromagnetic 

flow in a rotating channel permeated by an inclined 

magnetic field in the presence of an oscillator 

(Ghosh, 1997 and Ghosh and Pop, 2002). They 

examined also in their next work Ghosh et al. 

(2010), the transient hydromagnetic flow in a 

rotating channel permeated by an inclined magnetic 

field with magnetic induction and Maxwell 

displacement current effects. Rudraiah et al. (1995) 

investigated the effect of a transverse magnetic field 

on natural convection flow inside a rectangular 

enclosure with isothermal vertical walls and 

adiabatic horizontal walls and found out that a 

circulating flow is formed with a relatively weak 

magnetic field and that the convection is suppressed 

and the rate of convective heat transfer is decreased 

when the magnetic field strength increases. Alchaar 

et al. (1995) investigated numerically the natural 

convection in a shallow cavity heated from below in 

the presence of an inclined magnetic field and 

showed that the convection modes inside the cavity 

strongly depend on both the strength and orientation 

of the magnetic field and that horizontally applied 

magnetic field is the most effective in suppressing 

the convection currents. Al-Najem et al. (1998) 

used the power law control volume approach to 

determine the flow and temperature fields under a 

transverse magnetic field in a tilted square 

enclosure with isothermal vertical walls and 

adiabatic horizontal walls at Prandtl number equal 

0.71, and showed that the suppression effect of the 

magnetic field on convection currents and heat 

transfer is more significant for low inclination 

angles and high Grashof numbers. Buhler (1995) 

has considered MHD flows in arbitrary geometries 

in strong magnetic fields related to the design of 

fusion reactor blankets. Viskanta et al. (1986) have 

studied three-dimensional natural convection heat 

transfer of a liquid metal in a cavity. Tagawa and 

Ozoe (Tagawa and Ozoe 1997, 1998) have reported 

on the enhancement of heat transfer rate by the 

application of a static magnetic field in a cubical 

enclosure. Piazza and Ciofalo (2002) have analyzed 

MHD free convection in a liquid-metal filled cubic 

enclosure for the conditions of differential heating 

and internal heating. 

Recently, Ramana Reddy et al. (2016) presented the 
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MHD mixed convection oscillatory flow over a 

vertical surface in a porous medium with chemical 

reaction and thermal radiation. They analysed the 

influence of a first-order homogeneous chemical 

reaction, heat source and Soret effects are analyzed. 

They conclude that, the velocity decreases with 

increasing the Prandtl number, and magnetic field 

parameter whereas reverse trend is seen with 

increasing the heat generation parameter, radiation 

parameter, porous parameter, Soret number, thermal 

and solutal Grashof numbers. The temperature 

decreases as the values of Prandtl number increase 

and reverse trend is seen by increasing the values of 

the thermal radiation parameter, heat source 

parameter. The concentration decreases as the 

values of the chemical reaction parameter and 

Schmidt number whereas concentration increases 

with increase the value of Soret number. 

To our knowledge, the combination between the 

magnetic field orientation and the inclinations of the 

cylinder enclosure on the oscillatory natural 

convection has never been studied, except for the 

case treated recently by Oudina and Bessaïh (2014), 

but with axial and radial magnetic field applied 

without inclination of the enclosure. Therefore, the 

objective of the present contribution is to study the 

combination between the inclinations of the 

cylinder enclosure and the magnetic field 

orientation on the oscillatory natural convection. 

The study was carried out in oscillatory state, for 

different cases: inclination of the cylinder (φ= 0°, 

30° and 45°), under the magnetic field at different 

orientations (δ =0, 30°, 45° and 90°, Ha ≤ 50), and 

the combination between them. The critical Grashof 

number Grcr and corresponding critical frequency 

Frcr associated with different inclinations of 

cylinder  and Hartmann numbers/different 

orientations δ are determined in each case and 

discussed. Section 2 presents the geometry and 

mathematical model. Section 3 discusses the 

numerical method and techniques, which have been 

used for the computation; Section 4 presents the 

results and discussion: computer code validation, 

effect of the inclination of the cylinder enclosure, 

effect of the magnetic field orientation and the 

combination between them. Finally, a conclusion is 

given. 

2. GEOMETRY AND MATHEMATICAL 

MODEL 

The geometry considered is a cylindrical enclosure 

(Fig.1) of radius R and height H, thus with an 

aspect ratio Ar = H/R = 2. The enclosure filled 

completely with a molten metal (InP), have a 

Prandtl number equal Pr = 0.015. The horizontal 

walls of the enclosure are maintained at different 

temperatures, the bottom wall is maintained at the 

hot temperature Th while the top wall maintained at 

the cold temperature Tc (Th >Tc). The side wall is 

supposed adiabatic. The inclination of the cavity 

was also considered, with a varying angle  

between the heated wall and the horizontal axis. 

The flow is subjected to the action of an external 

uniform magnetic field with different orientations. 

Electrically, the walls of the cylindrical enclosure 

are insulated. The induced magnetic field is 

negligible because the magnetic Reynolds number 

Rem is much smaller than unity (Seth et al. 2012). 

By neglecting the dissipation and Joule heating, and 

using R, υ/R, R2/υ, ρ (υR) 2 and (Th-Tc) as typical 

scales for lengths, velocities, time, pressure and 

temperature, respectively. The dimensionless 

governing equations for the conservation of mass, 

momentum, and energy with the Boussinesq 

approximation, together with appropriate initial and 

boundary conditions in the cylindrical coordinates 

system (r, z), are written in dimensionless form, as 

follows: 

 

 
(a) Physical problem with local positions of the 

monitoring points: S1, S2, S3, S4, S5, S6, S7, S8 and 

S9 

 

 
(b) Computational domain (80×160) 

Fig. 1. Geometry and computational domain 

with boundary conditions. 
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In Eqs. (2) and (3), EMrF
 
and EMzF represent the 

Lorentz forces components in the r and z directions 

respectively (Bessaïh and Bouabdallah, 2008), u 

and v are the dimensionless velocity components in 

the radial and axial directions, P is the 

dimensionless pressure and θ is the dimensionless 

temperature. So, the resulting dimensionless 

numbers are: Grashof 

number
23)(  RTTgGr ch  , Prandtl number 

Pr  and Hartmann number BrHa  , 

which indicate the ratio of the electromagnetic 

forces to the viscosity forces. The quantities g, β, ρ, 

  and  are the gravity acceleration, the thermal 

expansion coefficient, the density, the kinematic 

viscosity and the electric conductivity of the fluid, 

respectively.  

The above equations are solved subject to the 

following initial and boundary conditions: 

The initial conditions, at τ = 0, 

u = v = θ = 0                                                        (5a)  

The boundary conditions of the dimensionless 

quantities (u, v and θ) for τ > 0 are: 

- Along the bottom wall (z = 0, 0 ≤ r ≤ 1); 

u = v = 0, θ = 1                                                    (5b)                                    

- Along the top wall (z = Ar; 0 ≤ r ≤ 1); 

u = v = 0, θ = 0                                                    (5c) 

- Along the sidewall (0 ≤ z ≤ Ar; r = 1); 

u = v = 0,
r


 = 0                                                (5d) 

- Along the symmetry axe (0 ≤ z ≤ Ar; r = 0); 

u = 0, 
r

v




= 0, 

r


= 0                                         (5e) 

3. NUMERICAL METHOD 

The governing equations (Eqs. (1)-(4)) with the 

associated boundary and initial conditions (Eqs. 5a-

e) are solved using a finite volume method. Scalar 

quantities are stored at the center of control volume, 

whereas the vectorial quantities are stored on the 

faces of each volume. For the discretization of 

spatial terms, a second-order central difference 

scheme is used for the diffusion and convection 

terms of the mathematical model, and the 

SIMPLER Algorithm (Patankar, 1980) is used to 

determine the pressure from continuity equation. 

The obtained algebraic equations are solved by the 

line-by-line tri-diagonal matrix algorithm (TDMA). 

The convergence is declared when the maximum 

relative change between two consecutive iteration 

levels fell below than 10-5. 

The increments r and z of the grid are not regular, 

they are chosen according to geometric 

progressions of ratio equal to 1.05 (Atia et al. 

2015), which permitted grid refinement near the 

walls, in the Hartmann layer where large velocity 

and temperature gradients exist, thus requiring a 

larger number of nodes in order to resolve the 

specific characteristics of the 

magnetohydrodynamic flow, also in order to reduce 

numerical errors.  

The grid independency tests are presented in Table 

1 which includes the values of the stream function 

and the average Nusselt number for different grid 

sizes. We can notice that the relative error between 

all grids is very low, and does not exceed 7%. We 

also see that the low relative error occurs between 

the two meshes 80 × 160 and 90 × 180. It does not 

exceed 1% indicated that it gives the same 

numerical solution of the problem. So, the grid used 

has 80×160 nodes (the same computation domain 

used in the work of Oudina and Bessaïh, 2014 and 

Bessaïh et al. 2009). This grid is considered to 

show the best compromise between computational 

time and precision. Calculations were carried out on 

a PC with a 2.8 GHz CPU. Thus, the average 

computing time for a typical case was 

approximately 8 hours. 

 

Table 1 Effect of grid size on the stream function 

and the average Nusselt number for Gr = 105, φ 

= 30°, Pr = 0.015 and Ha = 0 

Grid 

nr × nz 
max  Nuavg 

50 × 100 34.028 3.364 

60 × 120 34.022 3.352 

70 × 140 34.004 3.301 

80 × 160 34.00 3.282 

90 × 180 34.001 3.282 

 



A. Atia et al. / JAFM, Vol. 9, No. 6, pp. 3001-3011, 2016.  

 

3005 

4. RESULTS AND DISCUSSION 

4.1 Computer Code Validation 

To allocate more confidence in our numerical 

results, we have established some comparisons with 

other experimental and numerical investigations 

available in the literature. Firstly, a comparison is 

presented between our numerical results and those 

obtained by the authors (Kakarantzas et al. 2009, 

Karcher et al. 2002, Mahfoud and Bessaïh, 2012). 

They used a cylindrical cavity of aspect ratio Ar = 

4.125 (in this study Ar = R / H), filled with a fluid 

of low Prandtl number Pr = 0.0203 (liquid alloy 

GaInSn in eutectic composition), the bottom and 

lateral wall cooled by circulation of the water, and 

the upper wall heated electrically. The maximum 

value of the temperature versus the Hartmann 

number Ha is presented in Fig. 2a. A good 

agreement between the obtained and reported 

results was observed. 

Secondly, the comparison has been made for the 

vertical distribution of the radial velocity u at r = 

0.25, with experimental measurements obtained by 

Karcher et al. (2002), for Ha = 0 (Fig. 2b). It is 

clear that the computed values can be seen to be in 

excellent agreement with the measurements. These 

comparisons validate our computer code by 

assigning the desired confidence to use. 

 

(a) 

 
(b) 

Fig. 2. Comparison between our results and 

previous numerical/experimental studies. 

4.2 Effect of the Inclinations of the 

Enclosure on the Oscillatory Natural 

Convection ( ≠ 0°) 

We are interested herein to the flow behavior in the 

absence of magnetic field (Ha = 0). The Eqs. (1)- 

(4) are solved numerically without taking into 

account the Lorentz forces EMrF and EMzF  in the 

Navier-Stokes equations. The calculation of the 

oscillatory solution consists on the determination of 

the critical Grashof number Grcr, for which the flow 

becomes oscillatory and periodic in time. The 

reason of these oscillatory instabilities is closely 

related to the mechanism of production of the 

secondary cells. This case is a good agreement with 

the results obtained by Gelfgat and Taansawa 

(1994), which supposed the instability is caused by 

the interaction between the central vortex and the 

smallest vortices. 

 

(a) 

 
(b) 

Fig. 3. Temporal evolutions of the dimensionless 

axial velocity component v, radial velocity 

component u, and temperature θ at monitoring 

point S8 at φ = 45°, (a) steady state for Gr = 

8×105, (b) Comparison of the results between two 

time steps for Grcr= 9×105 and Ha = 0. 

 

To detect the critical Grashof number Grcr of 

bifurcation from steady (Fig. 3a) to unsteady flows, 

we carry out a succession of numerical calculations, 

by increasing the Grashof number in predetermined 

intervals. The instabilities found for a 
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dimensionless time increment ∆τ can be numerical 

(no physical); then to eliminate these numerical 

instabilities, we recomputed the solution obtained 

with the same flow parameters, but with a new time 

increment ∆τ/2 (Ghernaout et al. 2014). If the 

amplitudes of oscillations remain the same ones in 

all the monitoring points after reduction of the time 

increment this instability will be physical (Fig. 3b).  

Figures 4a-b, show the time evolution of the 

dimensionless temperature θ and radial velocity u, 

respectively at different monitoring points for Grcr = 

9×105 and φ = 45°. The flow oscillates in a simple 

periodic manner around the averaged values. Each 

points of the fluid domain chosen in this 

investigation are characterized by a particular signal 

(shape, amplitude, frequency or other 

characteristics). We note that the temporal 

resolution effects are investigated by using 

successive time steps until no differences are 

observed in the amplitude of oscillations. As 

expected, the amplitude of the dimensionless 

temperature θ is smallest compared to the 

dimensionless radial velocity u. 

 

(a)    

 

 
(b) 

Fig. 4. Time evolution of the dimensionless 

temperature θ at S1, S4 and S7 (a), and 

dimensionless radial velocity component 

u at S2, S5 and S8 (b), for Grcr = 9×105, 

φ = 45°and Ha = 0. 

 

In order to obtain the energy spectrum of 

oscillations, we have used the fast Fourier transform 

(FFT) of a number Nech of samples of the time 

variations of various dimensionless parameters. 

This transform, once multiplied by the half of its 

conjugate quantity, gives the power spectrum 

density (PSD) as a function of the oscillation 

frequencies (Fig. 5), defined by:  F = k / (Nech×Δτ), 

where Δτ is the dimensionless time step and k = 1, 

2, Nech / 2. Energy has been normalized by N2
ech. 

The dimensionless predominant frequencies are 

considered as those playing the main role in the 

flow oscillation there can exist several others 

frequencies which are multiples of the dominant 

one (Stevens et al. 1999).  

 
Fig. 5. Power spectrum of the dimensionless 

radial velocity component u, for Grcr = 9 ×105, 

φ = 45° and Ha = 0. Frcr = 30.72, represent the 

dimensionless critical frequency. 

 

 
Fig. 6. Evolution of critical Grashof number Grcr 

and corresponding frequency Frcr for different 

inclinations of the enclosure. 

 

The effect of the inclinations of the cylinder on the 

flow stability is shown in Fig. 6, which displays the 

evolution of the critical Grashof number Grcr and 

corresponding frequency Frcr for different 

inclinations of the cylinder φ. It can be seen that the 

variation of the angle of inclination of the cylinder 

to a significant effect on the stabilization of the flow 

and that the stabilization is better for the angle of 

inclination φ = 30° corresponding to a number of 

critical Grashof Grcr= 4.1×106. 
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4.3 Effect of Magnetic Field Orientation 

on the Oscillatory Natural Convection  

(Ha ≠ 0) 

In this section, we are interested in the oscillatory 

solution of the flow convection with different 

orientations of magnetic field (δ = 0°, 30°, 45° and 

90°). For this goal, we fixed the cylinder without 

inclination ( = 0°). According to the work of 

Bouabdallah et al. (2011), we report only the results 

for positive angles, and note that for negative angles 

(-δ), the same results are obtained in the range 0 ≤ 

δ≤ 90°. 

In general, the magnetic field suppresses the fluid 

motion and reduces the heat transfer rate. As the 

Hartmann number increases, the temperature 

gradients become less abrupt and the convection 

effect become less intense, resulting in smaller 

velocities. Thus, the increase of the magnetic field 

favors the conduction heat transfer. Our numerical 

simulations are presented for various values of the 

Hartmann number.  

To see the effect of magnetic field on the oscillatory 

flow regime, we applied the magnetic field in radial 

direction (δ = 0°). The Fig. 7, present the time-

dependent of the axial velocity component in one 

period, for Grashof number Gr = 2.1×106 at angle 

of inclination of the cylinder equal φ = 0°, and for 

various Hartmann numbers (Ha = 10, 20, 30, 40 and 

50). It is clearly that the increase of Hartmann 

number (intensity of magnetic field), stabilize the 

oscillatory flow and reduce the magnitude of 

velocity (Raja et al. 2013). The flow regime is 

oscillatory for Ha = 10, and stabilized to steady 

state flow when Ha > 10. This is translates the 

ability of the magnetic field on the stability of 

convective flows, this reduction due to radial 

Lorentz force which slows the velocity of particles. 

 

 
Fig. 7. Effect of magnetic field on the time 

dependent v-velocity component at monitoring 

point S7, for Gr = 2.1×106 and δ = 0°, for 

different Hartmann number (φ = 0° 

and Ha ≤ 50). 

 

In order to explain the nature of the flow 

oscillatory, we connect the temporal evolution of 

the dimensionless axial velocity v at point S8 during 

one period with evolution of the flow structure 

(streamline and temperature field) at various 

dimensionless times: τa, τb, τc, τd, τe and τf, for Grcr 

= 9×106, φ = 0°, δ = 0° and Ha = 30 (Fig. 8). The 

flow field presents two cells. These cells dilate and 

narrow during the time (τa, τb, τc, τd, τe and τf). At 

time τa, the structure characterized by a small cell 

located in bottom of liquid and separated by another 

secondary recirculation cell (dashed lines) in top of 

enclosure with a negative mass flow. At times τb, τc, 

τd and τe the size of secondary recirculation cell 

change and narrowing gradually in the axial 

direction, after (at time τf) this cell dilate gradually. 

We note that, the streamlines structure at the time τa 

is identical at the time τf, which means that the 

oscillatory flow is periodic. The temperature field is 

very significant in this case where the magnetic 

field is applied in radial direction (δ = 0°), and 

shows the existence and the predominance of the 

convective mode compared to the diffusive mode 

(deformation of the isotherms). 

 

 
Fig. 8. Time evolution of the dimensionless axial 

velocity v in oscillatory flow at point S8, with 

streamlines and isotherms at various 

dimensionless time: τa, τb, τc, τd, τe and 

τf, for Grcr = 9×106 and φ = 0°. The 

magnetic field is applied in the radial 

direction (δ = 0° and Ha = 30). 

 

Figures 9a-b, show the magnetohydrodynamic 

stability diagram (Grcr – Ha) and (Frcr –Ha) for 

different orientation of magnetic field (δ = 0°, 30°, 

45° and 90°). No tilting in the cylinder enclosure (φ 

= 0°). We can see that the strong dependence 

between the onset of oscillatory flow (the critical 

Grashof number and corresponding frequency) and 

the orientation of magnetic field, where the 

strongest damping of the flow is obtained when the 

magnetic field is applied along the radial direction 

(δ = 0°). These results are in good agreement with 

those obtained by Oudina and Bessaïh (2014) and 

Sankar et al. (2006). They found a better 

stabilization of the flow where the magnetic field 

applied in the radial direction. 

To give the combination between the inclinations of 

the enclosure and the magnetic field orientation on 

oscillatory flow, we have presented the evolution of 

critical Grashof number and frequency for different 

Hartmann number associated with different 
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orientation of magnetic field for inclination of the 

cylinder equal to φ = 30° and φ = 45°, respectively 

(Figs. 10a-b and Figs. 11a-b). In these figures we 

are presented the value of critical Grashof number 

corresponds of the best stabilization by tilting the 

cylinder (φ = 30°, without magnetic field) by a 

dotted line for comparison with the results. 

 

(a) 

 
(b) 

Fig. 9. Magnetohydrodynamic stability diagram 

for different orientation of magnetic field (a) 

Grcr – Ha and (b) Frcr – Ha. No tilting in the 

enclosure (φ = 0° and Ha ≤ 50). 

 

4.4 Combination between the 

Inclinations of the Enclosure and Magnetic 

Field (Ha ≠ 0 and   ≠ 0) 

There has been a significant increase in Grashof 

number during the increase of the intensity of 

magnetic field and similarly for the corresponding 

frequency, and can always see the best stabilization 

found for inclination of the cylinder φ = 30° and the 

radial direction of the magnetic field (δ = 0°). Also 

we can find from these figures that can stabilize the 

convective flow by different methods according to 

the available possibilities. Either, by a tilting of the 

cylinder enclosure (if we haven't the possibilities to 

apply a magnetic field), or applied of magnetic field 

in fairly orientation, or by the combination of both 

for a better stabilization. For example, if we take 

(from Fig. 10a and Fig. 11a) the number of critical 

value of Gr = 4.1 × 106, we can reach that number 

by: 

- Inclination of the cylinder by φ = 30° without 

magnetic field (Ha = 0). 

- Inclination of the cylinder by φ = 45° and 

applied of magnetic field with orientation δ = 

45° (Ha = 20). 

- Inclination of the cylinder by φ = 45° and 

applied of magnetic field in transverse 

direction, δ = 90° (Ha = 30). 

 

(a) 

 

 
(b) 

Fig. 10. Magnetohydrodynamic stability diagram 

for different orientations of magnetic field, (a) 

Grcr – Ha and (b) Frcr – Ha. The enclosure has a 

fixed inclination φ = 30° (Ha ≤ 50). 

 
Figure 12, shows a comparison between the case 

where the angle of inclination of the cylinder and 

magnetic field orientation are the same (φ = δ), it is 

clear that the best stabilization is found where the 

inclination of cylinder and magnetic field 

orientation equal an φ = δ = 30°. 

5. CONCLUSION 

The combination between the inclinations of the 

enclosure and the effect of magnetic field 

orientation on the oscillatory natural convection has 

been numerically studied. The study was carried out 

in the oscillatory state, for different cases: 

inclination of the cylinder (φ = 0°,30° and 45°), 

under the effect of magnetic field in different 
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orientations (δ = 0, 30°, 45° and 90°, Ha ≤ 50) and 

the combination between them.  

 

(a) 

   

 
(b) 

Fig. 11. Magnetohydrodynamic stability diagram 

for different orientation of magnetic field, (a) 

Grcr – Ha and (b) Frcr – Ha. The enclosure has a 

fixed inclination φ = 45° (Ha ≤ 50). 

 

The obtained results have been compared with the 

available data (experimental/ numerical) from 

the literature and good agreement has been found. 

The main results are as follows: 

 The variation of inclination of the cylinder has 

a significant effect on the stabilization of the 

flow, and shows that the best stabilization of 

oscillatory natural convection is obtained at the 

inclination of the cylinder by φ = 30°, where 

the corresponding critical Grashof number 

equal Grcr= 4.1×106.  

 A strong dependence between the direction of 

the magnetic field and the critical Grashof 

number and their corresponding frequency as 

summarized in the magnetohydrodynamic 

stability diagram. 

 A radial magnetic field (δ = 0°), provides a 

strong stabilization of the flow field, where the 

high value of critical Grashof number is 

obtained for this case. 

 The combination between the inclinations of 

the cylinder enclosure and the orientation of 

magnetic field has also a significant effect on 

the stabilization of the flow, and that the best 

stabilization is found for two cases: the case of 

inclined enclosure at φ = 30° and the applied 

of radial magnetic field (δ = 0°), and the case 

of the same inclination of the enclosure and 

magnetic field φ = δ = 30°. 

The obtained results in this study may allow 

researchers and industrialists to know the 

oscillatory modes of conducting fluid in an inclined 

cylindrical enclose with and without magnetic field, 

and help them for the stabilization according to the 

available possibilities, in order to improve the 

quality of the semiconductors obtained during the 

crystal growth.  

 

 
Fig. 12. Magnetohydrodynamic stability diagram 

in both combined case: inclination of the 

cylinder enclosure and orientation of the 

magnetic field (φ = δ), for different 

Hartmann number. 

REFERENCES 

Alchaar, S., P. Vasseur and E. Bilgen (1995). The 

effect of a magnetic field on natural convection 

in a shallow cavity heated from below. 

Chemical Engineering Communications 

134(1), 195–209. 

Al-Najem, N. M., K. M. Khanafer and M. M. El-

Refaee (1998). Numerical Study of laminar 

natural convection in tilted enclosure with 

transverse magnetic field. International 

Journal of Numerical Methods for Heat and 

Fluid Flow 8(6), 651–672. 

Atia, A., S. Bouabdallah, M. Teggar and A. 

Benchatti (2015). Numerical study of mixed 

convection in cylindrical Czochralski 

configuration for crystal growth of silicon. 

International Journal of Heat and Technology 

33(1), 39–46. 

Battira, M. and R. Bessaïh (2008). Three-

dimensional natural convection in the 

horizontal Bridgman configuration under 



A. Atia et al. / JAFM, Vol. 9, No. 6, pp. 3001-3011, 2016.  

 

3010 

various wall electrical conductivity and 

magnetic field. Numerical Heat Transfer 

55(1), 58–76. 

Bessaïh, R. and S. Bouabdallah (2008). Numerical 

study of oscillatory natural convection during 

solidification of a liquid metal in a rectangular 

enclosure with and without magnetic field. 

Numerical Heat Transfer 54(3), 331–348. 

Bessaïh, R., A. Boukhari and P. Marty (2009). 

Magnetohydrodynamics stability of a rotating 

flow with heat transfer. International 

Communications in Heat and Mass Transfer 

36(9), 893–901. 

Bontoux, P., C. Smutek, A. Randriamampianina, B. 

Roux, G. P. Extrémet, A. C. Hurford, F. 

Rosenberger and G. De Vahl Davis (1986). 

Numerical solutions and experimental results 

for three-dimensional buoyancy driven flows 

in tilted cylinders. Advances in Space Research 

6(5), 155–160. 

Bouabdallah, S. and R. Bessaïh (2012). Effect of 

magnetic field on 3D flow and heat transfer 

during solidification from a melt. International 

Journal of Heat and Fluid Flow 37, 154–166. 

Bouabdallah, S., R. Bessaïh, B. Ghernaout and A. 

Benchatti (2011). Effect of an external 

magnetic field on 3-D oscillatory natural 

convection of molten gallium during phase 

change. Numerical Heat Transfer 60(1), 84–

105. 

Bühler, L. (1995). Magnetohydrodynamic flows in 

arbitrary geometries in strong, non-uniform 

magnetic fields: A numerical code for the 

design of fusion reactor blankets. Fusion 

Science and Technology 27(1), 3–24. 

Cerisier, P. and S. Rahal (1996). Experimental 

study of the competition between convective 

rolls in an enclosure. Dynamics of Multiphase 

Flows across Interfaces 467, 105–116.  

Cessi, P. and W. R. Young (1992). Fixed-flux 

convection in a tilted slot. Journal of Fluid 

Mechanics 237, 57–71. 

Delgado-Buscalioni, R. and E. Crespo del Arco 

(2001). Flow and heat transfer regimes in 

inclined differentially heated cavities. 

International Journal of Heat and Mass 

Transfer 44(10), 1947–1962. 

Garandet, J. P., T. Alboussiere and R. Moreau 

(1992). Buoyancy-driven convection in a 

rectangular enclosure with a transverse 

magnetic field. International Journal of Heat 

and Mass Transfer 35(4), 741–748. 

Gelfgat, A. Y. and P. Z. Bar-Yoseph (2001). The 

effect of an external magnetic field on 

oscillatory instability of convective flows in a 

rectangular cavity. Physics of Fluids 13(8), 

2269–2279. 

Gelfgat, A. Y. and I. Tanasawa (1994). Numerical 

analysis of oscillatory instability of buoyancy 

convection with the Galerkin spectral method. 

Numerical Heat Transfer 25(6), 627–648. 

Ghernaout, B., S. Bouabdallah, A. Benchatti and R. 

Bessaïh (2014). Effect of the buoyancy ratio 

on oscillatory double-diffusive convection in 

binary mixture. Numerical Heat Transfer 

66(8), 928–946. 

Ghosh, S. K. (1991). A note on steady and unsteady 

hydromagnetic flow in a rotating channel in 

the presence of inclined magnetic field. 

International Journal of  Engineering Science 
29(8), 1013–1016. 

Ghosh, S. K. (1997). A note on unsteady 

hydromagnetic flow in a rotating channel 

permeated by an inclined magnetic field in the 

presence of an oscillator. Czechoslovak 

Journal of Physics 47(8), 787–792. 

Ghosh, S. K., O. A. Bég, J. Zueco and V. R. Prasad 

(2010). Transient hydromagnetic flow in a 

rotating channel permeated by an inclined 

magnetic field with magnetic induction and 

maxwell displacement current effects. 

Zeitschrift für angewandte Mathematik und 

Physik 61(1), 147–169. 

Ghosh, S. K. and I. Pop (2002). A note on a 

hydromagnetic flow in a slowly rotating 

system in the presence of an inclined magnetic 

field. Magnetohydrodynamics 38(4), 377–384. 

Kakarantzas, S. C., I. E. Sarris, A. P. Grecos and N. 

S. Vlachos (2009). Magnetohydrodynamic 

natural convection in a vertical cylindrical 

cavity with sinusoidal upper wall temperature. 

International Journal of Heat and Mass 

Transfer 52(1-2), 250–259. 

Karcher, C., Y. Kolesnikov, O. Andreev and A. 

Thess (2002). Natural convection in a liquid 

metal heated from above and influenced by a 

magnetic field. European Journal of 

Mechanics- B/ Fluids 21(1), 75–90. 

Lock, G. S. H. and J. Fu (1993). Natural convection 

in the inclined cranked thermosyphon. Journal 

of Heat Transfer 115(1), 167–172. 

Mahfoud, B. and R. Bessaïh (2012). Stability of 

swirling flows with heat transfer in a 

cylindrical enclosure with CO/Counter-rotating 

end disks under an axial magnetic field. 

Numerical Heat Transfer 61(6), 463–482. 

Markham, B. L. and F. Rosenberger (1984). 

Diffusive-convective vapor transport across 

horizontal and inclined rectangular enclosures. 

Journal of Crystal Growth 67(2), 241–254. 

Oreper, G. M. and J. Szekely (1983). The effect of 

an externally imposed magnetic field on 

buoyancy driven flow in a rectangular cavity. 

Journal of Crystal Growth 64(3), 505–515. 

Oudina, F. M. and R. Bessaïh (2014). Numerical 

modeling of MHD stability in a cylindrical 

configuration. Journal of the Franklin Institute 

351(2), 667–681. 

http://www.sciencedirect.com/science/journal/00207225
http://link.springer.com/journal/33
http://link.springer.com/journal/33


A. Atia et al. / JAFM, Vol. 9, No. 6, pp. 3001-3011, 2016.  

 

3011 

Ozoe, H. and M. Maruo (1987). Magnetic and 

gravitational natural convection of melted 

silicon two dimensional numerical 

computations for the rate of heat transfer. 

JSME 30(263), 774–784. 

Patankar, S. V. (1980). Numerical Heat Transfer 

and Fluid Flow, McGraw-Hill, New-York. 

Piazza, I. D. and M. Ciofalo (2002). MHD free 

convection in a liquid-metal filled cubic 

enclosure. II. Internal heating. International 

Journal of Heat and Mass Transfer 45(7), 

1493–1511. 

Raja, T., S. Karthikeyan and B. Senthilnathan 

(2013). A magneto-convection over a semi-

infinite porous plate with heat generation. 

Journal of Applied Fluid Mechanics 6(4), 589–

595. 

Ramana Reddy, G. V., N. Bhaskar Reddy and A. J. 

Chamkha (2016). MHD mixed convection 

oscillatory flow over a vertical surface in a 

porous medium with chemical reaction and 

thermal radiation. Journal of Applied Fluid 

Mechanics 9(3), 1221–1229. 

Rudraiah, N., R. M. Barron, M. Venkatachalappa 

and C. K. Subbaraya (1995). Effect of a 

magnetic field on free convection in a 

rectangular enclosure. International Journal of 

Engineering Science 33(8), 1075–1084. 

Sankar, M., M. Venkatachalappa and I. S. 

Shivakumara (2006). Effect of magnetic field 

on natural convection in a vertical cylindrical 

annulus. International Journal of Engineering 

Science 44(20), 1556–1570. 

Seth, G. S. and S. K. Ghosh (1986). Unsteady 

hydromagnetic flow in a rotating channel in 

the presence of inclined magnetic Field. 

International Journal of Engineering Science 
24(7), 1183–1193. 

Seth, G. S., R. Nandkeolyar and Md. S. Ansari 

(2012). Effects of hall current and rotation on 

unsteady MHD couette flow in the presence of 

an inclined magnetic field. Journal of Applied 

Fluid Mechanics 5(2), 67–74.  

Stevens, J. L., J. M. Lopez and B. J. Cantwell 

(1999). Oscillatory flow states in an enclosed 

cylinder with a rotating end wall. Journal of 

Fluid Mechanics 389, 101–118. 

Tagawa, T. and H. Ozoe (1997). Enhancement of 

heat transfer rate by application of a static 

magnetic field during natural convection of a 

liquid metal in a cube. Journal of Heat 

Transfer 119(2), 265–271. 

Tagawa, T. and H. Ozoe (1998). Enhanced heat 

transfer rate measured for natural convection 

in liquid gallium in a cubical enclosure under a 

static magnetic field. Journal of Heat Transfer 

120(4), 1027–1032. 

Viskanta, R., D. M. Kim and C. Gau (1986). Three-

dimensional natural convection heat transfer of 

a liquid metal in a cavity. International 

Journal of Heat and Mass Transfer 29(3), 

475–485. 

Wirtz, R. A. and W. F. Tsheng (1970). Finite 

difference simulation of free convection in 

tilted enclosures of low aspect ratio. In 

Numerical Methods in Thermal Problems I, 

Pineridge, UK, Swansea 242, 381–390. 

Wirtz, R. A. and W. F. Tsheng (1980). Natural 

Convection across Tilted Rectangular 

Enclosures of Small Aspect Ratio. In J. Catton 

and K. E. Torrance (Eds.) Natural convection 

in enclosures, ASME 8, 54–67. 

Woods, A. W. and S. J. Linz (1992). Natural 

convection and dispersion in inclined fracture. 

Journal of Fluid Mechanics 241, 59–74. 

 

http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225

