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ABSTRACT 

In this paper we investigate the fluid flow through a thin (or long) channel filled with a fluid saturated porous 

medium. We are motivated by some important applications of the porous medium flow in which the viscosity 

of fluids can change significantly with pressure. In view of that, we consider the generalized Brinkman’s 

equation which takes into account the exponential dependence of the viscosity and the drag coefficient on the 

pressure. We propose an approach using the concept of the transformed pressure combined with the 

asymptotic analysis with respect to the thickness of the channel. As a result, we derive the asymptotic 

solution in the explicit form and compare it with the solution of the standard Brinkman’s model with constant 

viscosity. To our knowledge, such analysis cannot be found in the existing literature and, thus, we believe that 

the provided result could improve the known engineering practice. 

Keywords: Brinkman’s equation; Pressure-dependent viscosity; Pressure-dependent drag coefficient; 

Transformed pressure; Asymptotic analysis. 

NOMENCLATURE 

F  dimensionless flux 

H  thickness of the channel 

l  length of the channel 

k̂  pressure-viscosity coefficient  

k  dimensionless pressure-viscosity 

coefficient 

εM  Characteristic number 

P̂  pressure 

P  dimensionless pressure 

dP  dimensionless pressure drop 

0P  referent pressure 

q transformed pressure 

û  velocity 

u  dimensionless velocity 

0V  referent velocity 

 

β̂  drag coefficient 

β  dimensionless drag coefficient 

ε small parameter 

̂  viscosity 

  dimensionless viscosity 

σ auxiliary parameter 

 

1. INTRODUCTION 

The steady-state flow of an incompressible, viscous 

fluid through a porous media is given by the 

conservation of mass and conservation of linear 

momentum principles. While the conservation of 

mass is described by the standard continuity 

equation 

ˆdiv 0,u                                                               (1) 

different laws have been used to describe the 

conservation of the linear momentum. Without 

doubt, Darcy law (Darcy 1856) is the most 

commonly used model stating that the filtration 

http://www.jafmonline.net/


I. Pažanin et al. / JAFM, Vol. 9, No. 6, pp. 3101-3107, 2016.  

 

3102 

velocity is proportional to the applied pressure 

gradient. However, it is based on several 

(restrictive) assumptions and, thus, its range of 

applicability is limited. In particular, expressed as a 

first order PDE for the velocity, Darcy law cannot 

sustain the no-slip boundary condition for the fluid 

velocity imposed on an impermeable wall. That 

inspired H. Brinkmann (Brinkman 1947) to propose 

the correction of the Darcy law in order to be able 

to impose such condition on an obstacle submerged 

in porous medium. In the absence of the external 

force, Brinkman equation can be written as 

ˆˆ ˆ ˆ ˆβ 0,p    u u                                             (2) 

Note that the second-order Eq. (2) can handle the 

presence of a boundary on which (physically 

relevant) no-slip condition is imposed. 

Nevertheless, in many geophysical problems the 

variations of the viscosity with pressure cannot be 

ignored if the flow is subjected to very high 

pressure drops. Such situation naturally occurs in 

petroleum engineering, namely in problems such 

as enhanced oil recovery and CO2 sequestration. 

In view of that, the Brinkman equation needs to be 

generalized in order to be able to capture the 

effects of the pressure-dependent viscosity. 

The notion that the fluid viscosity can depend on the 

pressure goes back to the celebrated work by Stokes 

(1845). Since then, numerous experimental 

investigations (see e.g. Binding et al. (1998), 

Goubert et al. (2001), Del Gaudio and Behrens 

(2009)) confirmed that, as the pressure is increased 

by several orders of magnitude, the variations of the 

viscosity with pressure should be taken into account 

while the flow is still incompressible. The viscosity-

pressure relation is most commonly described by 

the Barus law (Barus (1893)) stating that the 

viscosity increases exponentially with pressure: 

ˆˆ
0 0

ˆˆ ˆ ˆ( )   ,    , const. 0.kpp e k                         (3) 

In the context of Eq. (2), the pressure-dependent 

viscosity implies that the porous medium parameter 

β̂  (drag coefficient) also varies with the pressure 

(see e.g. Srinivasan et al. (2013)). More precisely, 

the exponential dependence (3) leads to a drag 

coefficient of the form 

ˆˆ
0 0

ˆˆ ˆ ˆ( )   ,    , const. 0.kpp e k                         (4) 

As a consequence, we arrive at the following 

generalized version of the Brinkman’s equation: 

   ˆˆ ˆ ˆ ˆ ˆ ˆdiv 2 ( ) β 0,p p p      D u u                  (5) 

where is    
1

ˆ ˆ ˆ
2

T    
  

D u u u  the symmetric 

part of the velocity gradient tensor. The aim of this 

paper is to study the flow governed by Eqs. (1) and 

(5) from the analytical point of view. Note that 

when ˆ 0   and β̂  is constant,  Eq. (5) reduces to 

simple Darcy equation, while for β̂ 0  and ̂  

constant, we get the Stokes equation. Finally ̂  

and β̂  are assumed to be constants (i.e. k = 0), we 

have the Brinkman's equation (2). 

Introducing the exponential dependence (3), (4) into 

the Brinkman’s equation makes the problem highly 

nonlinear and, thus, we cannot expect to derive the 

exact solution of the full system (1), (5) even in the 

case of the simple two-dimensional channel (i.e. 

fracture with plane-parallel walls). Therefore, we 

introduce the small parameter ε (denoting the ratio 

between thickness of the channel and its length) and 

propose the asymptotic approach as ε → 0. After 

rewriting the Eqs. (1), (5) in the non-dimensional 

form, we apply the concept of the transformed 

pressure originally proposed by Marušić-Paloka 

and Pažanin (2013). By doing that, we transform 

the momentum Eq. (5) into the equation with 

small nonlinear perturbation that we can control. 

In such transformed system, we compare the 

characteristic (non-dimensional) number εM  

describing the flow with small parameter ε trying 

to identify the critical case in which all the effects 

we seek for are balanced at the main order. We 

compute the asymptotic solution of the 

transformed problem in the most interesting 

(critical) case and then recover the solution of the 

governing problem by applying the inverse 

transformation. As a result, we obtain the effective 

model described by the explicit expressions for the 

velocity and pressure distribution. It enables us to 

clearly observe the influence of the viscosity-

pressure dependance and porous structure on the 

effective flow. In particular, we can easily 

compare our asymptotic solution with the solution 

of the standard Brinkman’s model with constant 

viscosity. 

To conclude the Introduction, we provide some 

bibliographic remarks on the subject. For the 

flow through porous media, as governed by the 

Brinkman equation and its various 

generalizations, analytical treatments can be 

found only in the constant viscosity case ( ˆ 0k  ). 

We refer the reader to Durlofsky and Brady 

(1987), Kuznetsov (1998), Malashetty et al. 

(2001), Merabet et al. (2008), Marušić-Paloka et 

al. (2012), Khan et al. (2014)). In the variable 

viscosity case ( ˆ 0k  ), the numerical approach 

has been developed and we refer the reader to 

Naskhatrala and Rajagopal (2009), Srinivasan et 

al. (2013). In those papers, the results based on 

numerical simulations have been provided clearly 

suggesting that the corresponding solutions 

exhibit significantly different characteristics than 

the solutions of the classical Darcy or 

Brinkman’s equation. We confirm those findings 

in the present paper using analytical (asymptotic) 

approach and without making any simplifying 

assumptions on the governing system of PDEs 

and its solution. If we assume that û= û (ˆx) i (in 

fact, û (ˆx) = const., due to (1)), then the Eq. (5) is 

reduced to a simple ODE for the pressure which can 

be easily solved by the separation of variables (see 

Subramanian and Rajagopal (2007)).  As far as we 

know, this is the first attempt to carry out such an 
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analysis and, thus, we believe that it could 

improve the known engineering practice. 

1If we assume that ˆu = ˆu (xˆ)i (in fact, ˆu(xˆ) = 

const., due to (1)), then the Eq. (5) is reduced to a 

simple ODE for the pressure which can be easily 

solved by the separation of variables (see 

Subramanian and Rajagopal 2007). 

2. FORMULATION OF THE 

PROBLEM 

We consider the flow in a simple two-dimensional 

domain 

  ˆ ˆ ˆ ˆ ˆ, : 0 ,0 .x y x l y h      2
R                 (6) 

The ratio ε = h/l is assumed to be small meaning 

that the channel under consideration is either very 

thin or very long. Such situation appears naturally 

in the applications we aim to address. As 

explained in the Introduction, the channel is filled 

with a fluid saturated porous medium and the flow 

is modeled by the generalized Brinkman’s 

equation with pressure-dependent viscosity and 

drag coefficient. Thus, we have the following 

system satisfied by the unknown fluid velocity û  

and pressure p̂ : 

   ˆˆ ˆ ˆ ˆ ˆ ˆdiv 2 ( ) β 0,p p p      D u u                  (7) 

ˆdiv 0, u                                                             (8) 

where the dependence of the functions ̂ and β̂  

upon the pressure is given by Eqs. (3) and (4) 

respectively. To complete the problem, suitable 

boundary conditions have to be added. We impose a 

standard no-slip boundary condition for the velocity 

on the channel walls and we assume that the flow is 

governed by the prescribed pressure drop

0ˆ ˆldP p p  . In view of that, the boundary 

conditions read: 

ˆ ˆ0  for   0, ,y h u                                                (9) 

ˆ ˆ0  for  0, ,x l  u i                                           (10) 

ˆ ˆ ˆ  for  ,   0, .ip p x i i l                                      (11) 

Our goal is to investigate the asymptotic behavior 

of the flow described by (7)–(11), as ε → 0. 

3. ANALYSIS 

3.1   Equations in Non-Dimensional Form 

The first step is to write the governing problem in 

the non-dimensional form representing the 

appropriate framework for our analysis. We do it in 
a standard way by introducing 

0 0

ˆ ˆ ˆ ˆ
,    ,    ,    ,

x y p
x y p

l l V P
   

u
u                    (12) 

0 0

0

ˆ ˆˆ β
,    ,    β=

ˆ1 ˆ β

k
k

P





                                     (13) 

where V0, P0 denote referent values of the velocity 
and pressure. Setting 

0
0

0β

P
V

l
                                                              (14) 

we obtain 

ε
2 ( ) ,kpM e p M k p

  
     εu u D u      (15) 

εdiv 0.u                                                            (16) 

Note that the above equations are posed in the ε-

independent domain Ω = (0,1)2. The non-

dimensional characteristic number Mε appearing in 

the Eq. (15) represents the ratio between the 

frictional effect due to drag and the frictional effect 

due to viscosity, namely 

2
0

0

ˆ

ˆ

l
M




                                                          (17) 

Finally, hereinafter we use the following notation 

for the partial differential operators: 

  
1 2 2 2

ε 2 2 2

1 1
div ,   v ,

v v v v

x y x y


 

   
    
   

v  

 ε ε ε

φ 1 φ 1
,   ( )

2

T
v

x y




         
   

εi j D v   

1 1

1
ε 2 2

1
       

,
1

       

2

v v

x y
v v + v

v v

x y





  
 
  

   
 
  
   

v i j  

3.2   Transformed Pressure 

Following the idea from Marušić-Paloka and 

Pažanin (2013), we introduce a new function qε, 
called the transformed pressure, such that 

ε ε .kpe p q                                                     (18) 

From (18) we deduce 

 1
,    .k kpq e e

k

    R                             (19) 

For the sake of the further analysis, it is important 

to observe that parameter σ in (19) can be chosen in 
an arbitrary way. Since 

ε ε ε

1
,kp

k
p e q q

e kq
    


                        (20) 

from (15)-(16) we get the following system satisfied 
by the velocity u and transformed pressure q: 

ε ε ε ε ε

2
( ) ,

k

k
M q M q

e kq


     


u u D u  

(21) 



I. Pažanin et al. / JAFM, Vol. 9, No. 6, pp. 3101-3107, 2016.  

 

3104 

εdiv 0.u                                                            (22) 

The transformed Eq. (21) is still nonlinear but we 

are able control the nonlinearity appearing on the 

right-hand side. Indeed, the liberty in choice of 

parameter σ (see (19)) enables us to choose it small 

enough so that 

2
lim 0.

k

k

e kq 



                                          (23) 

Such choice of the parameter σ will be justified in 

the sequel by the fact that the effective pressure 

does not depend on σ at all (see (35)). That 

means that, throughout the analysis, σ plays the 

role of just an auxiliary parameter, i.e. by 

choosing σ such that (23) holds, we do not 

impose any additional constraints in the process. 

3.3   Asymptotic Solution 

Now we have to construct the asymptotic solution 

of the transformed system (21)-(22). Before 

proceeding, it is important to make the following 

observation: if we kept characteristic number εM  

constant (i.e. independent of ε), then a simply 

calculation would yield the model with no 

contribution of the porous structure at the main 

order. Thus, we need to compare εM  with small 

parameter ε trying to identify the critical case in 

which those effects remain in the macroscopic 

model. It can be easily verified that the critical case 

takes place when
2

ε (ε )M O  . Indeed, if we take 

2
ε (ε )M O 

we would obtain a simple Darcy law 

not accounting the effects of the Brinkman 

(viscous) term. On the other hand, the assumption 
2

ε (ε )M O 
would yield the situation already 

described above. In view of that, we set 

ε 2
,    (1)

ε

M
M M O                                          (24) 

and perform a careful analysis under this 

assumption. Note that the assumption (24) suggest 

that the frictional effects between the fluid and the 

pores in the solid are dominant over the frictional 

effects within the fluid due to viscosity. 

Expanding the solution as 0 1ε ...    u u u

0 1ε ...q q q   and taking into account (23), we 

first conclude that 0 0( )q q x . Next, we obtain 

0

2
0 0 1

02 2

2

2

0

1
:   0

ε

1
:     0     ,

ε

         0   for    0,1.

dq dq
M M M

dx dyy

u
in

y

y

 
    





 


  




u
i j u

u

 

(25) 

We deduce 
1

0 0 1 1( , )   , ( )u x y q q x u i , leading to 

2 1
10 0
02
=  in   .

u dq
Mu M

dxy


   


                        (26) 

We can treat (0,1)x as a parameter and solve the 

above equation as a linear second-order ODE with 

respect to y. We get 

1 0
0 1 2( , ) ( ) ( ) .

M yM y dq
u x y C x e C x e

dx

        (27) 

The functions 1 2( ), ( )C x C x can be computed by 

taking into account that 
1
0 0u   for 0,1.y   We 

obtain 

0 0
1 2

1 1
( ) , ( ) .

M M

M M M M

dq dqe e
C x C x

dx dxe e e e



 

 
 

 

(28) 

It remains to determine the transformed pressure q0. 

From the divergence equation we deduce 

1 2
0 11  :     0   in    .

u u

x y

 
  

 
                           (29) 

Integrating the above equation with respect to y 

gives 

1 11 1
0 0 10 0

0  const.u dy u dy D
x

  
    

            (30) 

Taking into account (27), we obtain 

1

0 1 2

2
( ) .

2 2

M M

M M

M e e M
q x D x D

e e






  
   
  

 

(31) 

In view of (19), the boundary conditions for q0 are 

given by 

 0

1
( )   ,   0,1,ikpkq i e e i

k

                        (32) 

with 0
0 1

0 0

ˆ ˆ
, lp p

p p
p p

  . Consequently, we arrive at 

   0 01
0

1 1
( ) .

kp kpkp kq x e e x e e
k k

       

(33) 

In order to reconstruct the effective pressure effp  

related to the governing (dimensionless) problem2, 

we apply the inverse transformation (see (19)) to 

obtain 

0

1 1
( ) ln  .

( )
eff k

p x
k e kq x

 
  

  

                       (34) 

In view of (33) we deduce 

 0 01

1 1
( ) ln  .eff kp kpkp

p x
k e e e x

 

 
 
 

 
 

           (35) 

The effective velocity is provided as
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1
0( ) ( ) ,eff y u yu i where 1

0u is given by (27).Since 

0 1,p p  it follows 01 kpkpe e
  implying that 

effp  is well-defined. Moreover, observe that the 

effective pressure does not depend on the parameter 

σ at all. This fact justifies the above transformation 

procedure, namely the choice of the parameter σ 

such that (23) holds. 

4. DISCUSSION 

Let us write our (dimensionless) asymptotic 

solution. In view of (27), (28), (33), and (35), it has 

the following form:  

0 1

1
0

1
0

( ) ( ) ,

( ) [(1 )
( )

             +( 1) ( )],

eff

kp kp
M M y

M M

M M y M M

y u y

e e
u y e e

k e e

e e e e

 




 




  



  

u i

  

(36) 

0 01

1 1
ln ,

( )
eff kp kpkp

p
k e e e x

 

 
     

              (37) 

for , (0,1)x y  On the other hand, it can be easily 

verified that the solution corresponding to the 

standard Brinkman model (1)-(2) with constant 

viscosity reads: 

1 0

( ) ( ) ,

( ) [(1 )
( )

             +( 1) ( )],

B B

M M y
B

M M

M M y M M

y u y

p p
u y e e

e e

e e e e





 




  



  

u i

  

(38) 

1 0 0( ) ( ) .bp x p p x p                                       (39) 

The above velocity and pressure profiles have been 

plotted in Figs. 1-2 for different values of the 

pressure-viscosity coefficient k. According to the 

experimental results that one can find in the 

literature (see Srinivasan et al. (2013) for details), it 

is reasonable to choose values 

 0.01,0.02,0.035k  in the case of the referent 

pressure
6

0 10P  . In the following we also take M 

= 1 and put 0 300p   and 1 1p  ensuring the 

setting with high (dimensional) pressure drop. 

From Fig. 1 we conclude that the velocity profiles 

exhibit different characteristics in constant (k = 0) 

and variable viscosity case (k > 0). Indeed, though 

the symmetry (around y = 0.5) is preserved in both 

settings, the values of the velocity for k > 0 are more 

than 200 percent lower than those for k = 0. 

Furthermore, as the pressure-viscosity coefficient k 

increases, the velocity profile becomes more 

flattened indicating that the velocity, for higher 

values of k, does not vary too much with respect to y. 

 

Fig. 1. Plots of ( 0)Bu k  and 
1
0u  for various 

values of k > 0. 

 

 
Fig. 2. Plots of ( 0)Bp k  and effp  for various 

values of k > 0. 

 

 
Fig. 3. Plots of FB (k = 0) and F for various 

values of k > 0. 

 

The difference between constant and variable 

viscosity case is even more apparent when we 

compare the pressures (see Fig. 2). While for k = 0 

we have a simple linear function describing the 

pressure distribution, for k > 0 the outcome is 

completely different. We observe that the pressure 

exhibits a huge decrease within a short distance 

near the left end of the channel. After that it does 

not vary too much with respect to x. That suggests 

the appearance of the pressure boundary layer in the 

vicinity of x = 0 in case of high pressure drops 

between the channel’s ends. Note that the decrease 

near x = 0 becomes more significant as the pressure-

viscosity coefficient k increases. 

Last but not least, it is interesting to investigate how 

the corresponding flow rate (flux) changes with 

respect to the pressure drop 0 1 (1,300)dP p p    

By a simple integration, for Brinkman’s model (k = 

0), we obtain that the flux increase linearly with the 
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change of the pressure difference across the 

channel, namely 

1 1 1
0 10

( ) ( ) ( 3 4).B

dP
F dP u y dy e e

e e




   


      (40) 

On the other hand, in the variable viscosity case, 

from (36), we deduce 

1 1 1
00 0

300 (300 )
1

1

( ) . ( ) ,

            = ( 3 4).
( )

eff

k k dP

F dP u dy u y dy

e e
e e

k e e

  




 


 



 i

     (41) 

As we can observe from Fig. 3., the values of the 

flux are significantly lower for k > 0 than those for k 

= 0 so we may conclude that the standard 

Brinkman’s model in some sense overpredicts the 

flux. Moreover, the flux in variable viscosity case 

increase very slowly, with the increase of dP. In 

fact, the increase in the flux is negligible up to some 

(critical) value of the pressure drop dP (being rather 

high even for moderate values of k). Such 

phenomena becomes more dominant, as the value 

of the pressure-viscosity coefficient k goes up. For 

instance, for k = 0.035, the critical value of the 

pressure drop is almost 250, i.e. the variations of the 

flux are negligible for pressure drops dP < 250. 

5. CONCLUDING REMARKS 

In the present paper we address one important 

application of the porous medium flow: the fluid 

flow governed by the high pressure drop through a 

thin channel (i.e. thin fracture with plane-parallel 

walls) filled with fluid saturated porous medium. 

Such flows appear naturally in the industrial 

applications, in particular in petroleum engineering. 

The framework with high values of pressure induce 

the significant variations of the viscosity with 

respect to pressure making standard Brinkman’s 

model with constant viscosity inappropriate for 

describing such flows. Thus, we consider the 

generalized Brinkman’s model with pressure-

dependent viscosity and drag coefficient. The 

viscosity and drag-pressure relation is assumed to 

be exponential (Barus law) and the effective flow is 

found using asymptotic approach with respect to the 

thickness of the channel. The key idea is to 

introduce the notion of the transformed pressure 

enabling us to control the nonlinearity in the 

momentum equation. The obtained result clearly 

indicates that the asymptotic solution exhibits 

utterly different characteristics than the solution 

corresponding to the classical constant viscosity 

case. To our best knowledge, this is the first attempt 

to solve this problem using analytical approach and 

without making any simplifications on the starting 

problem. Finally, one of the benefits of the analysis 

presented here lies in the fact that it can be 

straightforwardly generalized in two directions. 

Instead of addressing simple fracture with plane-

parallel walls, we can consider more complex (and 

realistic) domain, namely the fracture with 

constrictions (see e.g. Gipouloux and Marušić-

Paloka (2002)). Besides the effects of the porous 

structure and pressure-dependent viscosity, in such 

setting we are particularly interested to detect the 

effects of the shape functions describing the 

constrictions. Another possible generalization 

would be to consider general viscosity-pressure 

dependence ˆ ˆ ˆ( )p p satisfied by Barus law and 

other empiric laws (see e.g. Marušić -Paloka and 

Pažanin (2013)). 

Instead of (19), we would simply introduce the 

transformed pressure q as 
ξ

( )
(ξ)

p d
B p

 
  and 

continue with the same procedure as above. 
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