
 

 
Journal of Applied Fluid Mechanics, Vol. 9, No. 6, pp. 3135-3145, 2016.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

DOI: 10.29252/jafm.09.06.24093 

 

Simulation of Fingering Phenomena in Fluid Flow through 

Fracture Porous Media with Inclination and 

Gravitational Effect 

H. S. Patel† and R. Meher 

Department of Applied Mathematics and Humanities, S. V. National Institute of Technology, Surat-395007, 

India. 

†Corresponding Author Email: hardy.nit@gmail.com  

(Received September 29, 2014; accepted January 21, 2016) 

ABSTRACT 

Here we have studied the fingering phenomena in fluid flow through fracture porous media with inclination 

and gravitational effect and investigate the applicability of Adomian decomposition method to the nonlinear 

partial differential equation arising in this phenomena and prove the convergence of Adomian decomposition 

scheme, which leads to an abstract result and an analytical approximate solution to the equation. Finally 

developed a simulation result of saturation of wetting phase with and without considering the inclination effect 

for some interesting choices of parametric data value and studied the recovery rate of the oil reservoir with 

dimensionless time. 
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NOMENCLATURE 

Amn area of a Surface open to flow in the flow 

direction  

Fv shape function 

g acceleration due to gravity 

K permeability 

LC characteristic length 

lma distance from the open surface to the no 

flow boundary 

Ρc capillary pressure 

Ρo pressure of oil 

Ρw pressure of water 

P mean pressure 

R  ultimate recovery 

R recovery 

Sw saturation of water, f raction 

So saturation of oil, f raction 

t time 

x = Lc dimensionless time 

Vma bulk volume of matrix(core sample 

Vw seepage velocity of water 

Vo seepage velocity of oil 

 

w  density of water 

o  density of oil 

α inclination of the bed  

  porosity, fraction 

w  water viscosity 

o  oil viscosity 

σ interfacial tension 

 

1. INTRODUCTION 

Fractured hydrocarbon reservoirs are important oil 

and gas resources. These reservoirs are composed of 

two continua: the fracture network and matrix. The 

fractures typically have a high permeability but a 

very low volume as compared to the matrix whose 

permeability may be of several orders having lower 

magnitude but it contains the majority of recover-

able oil. Water flooding is frequently implemented to 

increase recovery in fractured reservoirs. However, 

the performance of water flooding depends crucially 

on the wettability of the reservoir. If the reservoir is 

oil-wet, water will not readily displace oil in the 

matrix and only the oil in the fractures will be 

displaced, resulting in poor recoveries and the early 

water breakthrough. In water-wet fractured 

reservoirs, imbibition can lead to significant 

recoveries. Imbibition is the mechanism of 

displacement of non-wetting phase by wetting phase. 

Strong capillary forces led to the imbibition of water 

as the wetting phase into the matrix and the 

discharged oil is displaced into the fractures. As the 

viscosity ratio of heavy oil to water is large, viscous 
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forces in the oil phase become dominant and 

constitute the major factor for controlling flow 

distortions in the porous formation results 

perturbation (fingers) which shoot through the 

porous medium at relatively great speed. 

Simultaneous occurring of fingering and imbibition 

leads to fingering phenomena. 

Imbibition can take place by cocurrent and/or 

counter-current flow Scheidegger (1958), Parsons et 

al. (1966), Iffly et al. (1972), Hamon et al. 

(1986),Bentsen and Manai (1993), Al-Lawati and 

Saleh (1996), Pooladi Darvish et al. (2000). In 

cocurrent flow, the water and oil flow in the same 

direction and water pushes oil out of the matrix. In 

counter-current flow, the oil and water flow in 

opposite directions and oil escapes by flowing back 

in the same direction along which water has imbibed. 

In Co-current imbibition Fingering imbibition 

occurs, and it is faster and can be more efficient than 

counter-current imbibition Verma (1969), Bentsen 

and Manai (1993), Chimienti et al. (1999), Pooladi-

Darvish et al. (2000) but counter-current imbibition 

is often the only possible displacement mechanism 

for cases where a region of the matrix is completely 

surrounded by water in the fractures Pooladi-Darvish 

et al.(2000), Najurieta et al. (2001),Tang et al. 

(2001). Experimentally, this process can be studied 

by surrounding a core matrix sample with water for 

measuring the oil recovery as a function of time Iffly 

et al. (1972),Prey et al. (1978), Hamon et al. 

(1986),Bentsen and Manai (1993), Cuiec et 

al.(1994), Zhang et al. (1995), Cil et al. (1998), 

Chimienti et al. (1999), Rangel-German and 

Kovscek (2002). The imbibition rate is controlled by 

the permeability of the matrix, its porosity, the 

oil/water interfacial tension and flow geometry 

although the ultimate recovery is generally only 

governed by the residual oil saturation in strongly 

waterwet systems. Mattax et al. (1962), Iffly et al. 

(1972), Hamon et al. (1986),Babadagli et al. (1992), 

Al-Lawati and Saleh (1996),Shouxiang et al. (1997), 

Cil et al.(1998), Chimienti et al. (1999). 

Correlations have been developed to predict the 

recovery from counter-current imbibition as a 

function of time for different samples. Mattax et al. 

(1962) hypothesized that the oil recovery for systems 

of different size, shape and fluid properties is a 

unique function of a dimensionless time. Shouxiang 

et al. (1997) modified an expression derived by 

Mattax et al. (1962) to include the effect of the non-

wetting phase viscosity. Their experimental results 

showed that the imbibition time is inversely 

proportional to the geometric mean viscosities of 

water and oil. They proposed the following 

correlation: 

2

1

w o c

K
T t

L



  
                                                         (1) 

Where T be the dimensionless time, t is time, K is 

permeability,   is porosity, σ is interfacial tension, 

w  and o are the viscosities of water and oil and 

cL  is the characteristic length that is determined by 

the size, shape and boundary conditions of the 

sample and is defined by Zhang et al. (1995) as: 

1 ma
c

ma mas

A
F

V l
                                                            (2) 

1
c

c

L
F

                                                                       (3) 

 

 
Fig. 1. Grid system for 1-D Simulations of 

counter-current Imbibition. 

 
Where maV  is the bulk volume of the matrix (core 

sample), maA is the area of a surface open to flow in 

the flow direction, mal  is the distance from the open 

surface to the no flow boundary and the summation 

is over all open surfaces of the block. 

Mattax et al. (1962) showed that recovery as a 

function of time for a variety of experiments on 

different water wet samples that fall on a single 

universal curve as a function of the dimensionless 

time, T, Eq. (1). In particular, imbibition 

experimental data presented by Najurieta et al. 

(2001) for Alundum samples and Weiler sandstones, 

Hamon et al. (1986) results for synthetic materials 

and Zhang et al. (1995) results for Berea sandstones 

with different boundary conditions all scaled onto 

the same curve that was reasonably well fitted by the 

following empirical function first proposed by 

Aronofsky et al. (1958): 

(1 )TR R e 
                                                            (4) 

Where R is the recovery, R  is the ultimate 

recovery and γ is a constant that best matches the data 

with a value of approximately 0.5.Eq. (1) was 

proposed for strongly water-wet media and ignores 

the effects of wettability and here we have defined 

the dimensionless time as w

w c

gK
T

L



 

 
  
 

 for 

studying the recovery rate with dimensionless time. 

Furthermore the behaviour of different initial water 

saturation is a challenge. The presence of initial 

water saturation reduces capillary pressure, but 

increases the mobility of invading water. The 

competition between capillary pressure and relative 

permeability determines the recovery rate. Bald-win 

and Spinler (2002) monitored saturation profiles 

during spontaneous counter current imbibition using 

magnetic resonance imaging (MRI) they showed a 

transition from a flat frontal advance to a more 

gradual water encroachment as the initial water 

saturation was increased. 

A mathematical model that can treat the individual 
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fluid pressures, capillary effects, permeability, 

porosity and Saturation of wetting phase has been 

employed in the present work. The Adomain 

decomposition technique has been adopted for the 

approximate analytical solution since the problem is 

computationally intensive. Naturally occurring oil-

rich reservoirs to which the present study is 

applicable are in homogeneous and layered. A 

qualitative study has been carried out to explore the 

effect of permeability, porosity, time, distance with 

saturation of wetting phase and recovery variations 

with time on flow patterns. 

In this paper, we investigate the applicability of 

Adomian decomposition method to the nonlinear 

partial differential equation arising in the fingering 

phenomenon in fluid flow through fracture porous 

media in order to obtain the analytical approximate 

solution. 

The paper is organized as follows: in section 2, we 

have written the mathematical model along with 

some relation and the fundamental equation of the 

fingering phenomenon is discussed in section 3, In 

Section 4, the Adomian decomposition method 

applied to solve nonlinear functional equations. In 

section 5 where we develop and prove the 

convergence of Adomian decomposition scheme, 

which leads to an abstract result and the analytical 

approximate solution to the equation. Section 6 deals 

with the simulation result for some interesting 

choices of initial data. We conclude by summarizing 

the paper in section 7. 

2. MATHEMATICAL MODEL 

It is well known that in secondary oil recovery 

process when water with constant velocity ‘V‘ is 

injected into a seam saturated with oil and consisting 

of homogeneous porous medium, it is assumed that 

the entire oil on the initial boundary of the seam, x = 

0 (x is measured in the direction of the displacement), 

is displaced through a small distance due to the 

impact of injecting water which forms instability at 

the common interface where water meets the oil 

zone. To understand this phenomenon, we consider 

here a horizontal porous matrix of length L with its 

impermeable surface filled with oil formatted porous 

media. 

For the definiteness of the problem, consider that 

there is a uniform water injection into oil saturated 

porous matrix of an oil formatted region having 

homogeneous physical characteristics such that the 

injecting water outs through the oil formation region 

of the oil reservoir and gives rise to perturberance 

(fingers) at the interface where injected water pushes 

the oil from the oil formatted region. This furnishes 

well-developed fingers as in Figs. 2 and 3. The 

stability of a water flood depends on the mobility 

ratio between oil and water, heterogeneity of the 

porous medium, segregation of fluids in the 

reservoir, and dissipation of fluid fronts caused by 

capillary pressure. Instabilities occurs in both 

miscible and immiscible processes and originate on 

the interface between oil and water. These frontal 

instabilities are often characterized by a number of 

penetrating fingers of displacing fluid. Therefore, the 

entire oil at the initial boundary x = 0 (x being 

measured in the direction of displacement) is 

displaced through a distance “ cL ” due to water 

injection. It is further assumed that complete 

saturation exists at the initial boundary, and the 

saturation of displaced water (fingers) in the oil zone 

may happen up to distance cx L . 

Relative Permeability and Phase Saturation Relation: 

For definitions of mathematical analysis, we assume 

a standard form for the relationship between 

capillary pressure, permeability of water and 

permeability of oil with phase saturation as: 

, 1 , βw w o w c wK S K S P S                                       

(5) 

Where β is constant. 

 

 
Fig. 2. Representation of Fingering in a 

cylindrical piece of homogeneous porous media. 

 

 
Fig. 3. Schematic presentation of the fingering 

(instability) phenomenon. 

 

Fig. 4. Saturation of Water vs Time for 0  . 
 

3. FUNDAMENTAL EQUATION 

From Darcy’s law, the seepage velocity of water wV  
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and oil oV can be written as 

sinw w
w w

w

K P
V K g

x
 



  
  

 
                                   (6) 

sino o
o o

o

K P
V K g

x
 



  
  

 
                                     (7) 

Where “K” is permeability of homogenous medium, 

oK and wK  are relative permeability of oil and water 

which are function of So and w wS   and w  are 

constant densities of water and oil respectively, while 

 and  w w  are constant kinematic viscosity of the 

phases in homogenous porous media, α is the 

inclination of the bed, g is acceleration due to gravity. 

0w wS V

t x

 

 
 

                                                           (8) 

0o oS V

t x

 

 
 

                                                            (9) 

Where “  ” is the porosity of medium. from the 

definition of phase saturation, we have 

0w oS S                                                                   (10) 

The capillary pressure, which is defined as the 

pressure discontinuity of the following phases across 

the common interface is written as 

c o wP P P                                                                  (11) 

Impies 

w o cP P P

x x x

  
 

  
                                                        (12) 

Equation of motion for saturation can be obtained by 

substituting the values of wV  and oV  from Eqs. (6) 

and (7) in Eqs. (8) and (9) respectively. Thus, we 

have 

sinw w w
w

w

S K P
K g

t x x
  



     
    

      
           (13) 

sino o o
o

o

S K P
K g

t x x
  



     
    

      
               (14) 

Equation (12) and Equation (13) together 

sinw w o c
w

w

S K P P
K g

t x x x
  



      
     

         
(15) 

Now by considering Eqs. (10),(14) and (15), it 

becomes 

sin

o w o w c

w o w

o w
o w

o w

P K K K P
K k

x x

K K
g K q

  

  
 

   
   

   

 
    

 

                         (16) 

where q is constant of integration. Eq. (16) Implies 

sin

w c

o w

w o

w o

o w
o w

o w

w o

w o

K P
q k

P x

x K K
K

K K
g K

K K
K



 

  
 

 

 
 

 
  
  
  

 
  

  
 
 
  

                                  (17) 

Equations (15) and (17) together gives 

 
.

sin

.
1

.

         + 0
.

1
.

o c
o w

w o

o w

w o

o w

w o

K K P
g

S x

t x K

K

q

K

K

  











  
   

   
   
  
  



 
 
 
  

     (18) 

The value of the pressure of oil ( oP ) can be written 

as 

1 1

2 2

o c
o c

P P
P P P

x x

 
   

 
                                     (19) 

where P is the mean pressure. 

Equations (16),(19) together with Eq. (18) gives, 

1
sin 0

2

w w o
w

w

S K P
K g

t x x
 



     
     

      
    (20) 

on using equation (5) in equation (20), it reduces to 

β
sin 0

2

w w w
w

w

S S S
K g

t x x
 



     
     

      
    (21) 

Equation (21) describe the equation of motion for 

saturation of wetting phase in fingering imbibition in 

fluid flow through fracture porous media with 

inclination and gravitational effect. 

Using dimensionless variables, Eq. (21) reduces to, 

  w

c w c

gKx
X T t

L L



 

 
   

 
 

sinw w w
w

S S S
S

t X X X


    
  

    
                              (22) 

Here we choose appropriate initial and Dirichlets 

boundary condition due to the behaviour of 

saturation of displaced water at the interface in 

instability phenomena; that is, instability of oil and 

water zone at the interface is high, and it becomes 

stable as it becomes away from the interface and by 

Verma (1969) as, 
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1

2

( ,0) ,

(0, ) ( ),

(1, ) ( )

X
w

w

w

S X e

S T f T

S T f T







                                                        (23) 

where 1f  and 2f  are the saturation of water at 

common interface X = 0 and saturation of water at 

the end of the matrix of length X = 1 (i.e. cX L ). 

Here, during fingering phenomena, saturation 

fingers may take place up to the end of matrix, that 

is, up to cX L . To stabilize or to find the behaviour 

of the saturation fingers, it is necessary to discuss the 

behaviour of saturation of displace water by solving 

(22) together with (23). Eq. (22) is the desired 

nonlinear partial differential equation with suitable 

initial and boundary conditions which describes the 

saturation of displaced water in fingering phenomena 

arising during the oil recovery process. 

 

 

Fig. 5. Saturation of Water vs Time for 15  . 

 

Fig. 6. Saturation of Water vs Time for 30  . 

 

4. ANALYSIS OF THE ADOMIAN 

DECOMPOSITION METHOD 

In the early 1980s, a new numerical method was 

developed by Adomian (1994) in order to solve non-

linear functional equations of the form 

w w wLS RS NS g                                                   (24) 

Using an iterative decomposition scheme that led to 

elegant computation of closed-form analytical 

solutions or analytical approximations to solutions. 

In (24), L represents the linear part, N represents the 

nonlinear part, R represents the remainder or lower 

order terms and g is non homogeneous right-hand 

side. The solution wS  and non linearity N are 

assumed to have the following analytic expansions 

respectively, 

0 0

,       w wn w n

n n

S S NS A
 

 

                                (25) 

Where A s the are the Adomian polynomials that 

depend only on 0 1 2, , ,...,w w w wnS S S S and are given 

by the following formula: 

0

1
λ ,    0

! λ

n
k

n wkn
n

d
A N S n

n d





  
   

    
                     (26) 

 

Fig. 7. Saturation of Water vs Time for 45  . 

 

 

Fig. 8. Saturation of Water vs Time for 60  . 
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Table 1 Parametric value of the Parameters 

Parametric Unit 
Network Modelling 

Data 

Porosity 

Permeability 

Water density 

Water viscosity 

Acceleration due to gravity 

Frac 

m2 

Kgm-3 

Pas 

m/s2 

0.5 

10-4 

1010 

0.967*10-3 

0.101972 

 
 

 
Fig. 9. Normalized Oil Recovery rate with 

Dimensionless Time 

 

In order to better explain the method, we will first 

assume the convergence of the series in (25) and deal 

with the rigorous convergence issues later. The 

parameter k is a dummy variable introduced for ease 

of computation. There are several different versions 

of (26) that can be found in the literature that leads 

to easier computation of the nA s . It should be noted 

that the nA s  are the terms of analytic expansion of

wNS , where 
0

.w wnn
S S




  

In Adomian (1994), has shown that the expansion for 

wNS  in eq. (25) is a rearrangement of the Taylor 

series expansion of wNS  about the initial function 

0wS  in a suitable Hilbert or Banach space. 

Substitution of (25) in (24) results in the following, 

0 0 0

wn wn n

n n n

L S R S A g
  

  

   
      

   
   
                  (27) 

The above equation can be rewritten in a recursive 

fashion, yielding iterates wnS , the sum of which 

converges to the solution wS  satisfying (27) if it 

exists, 

   

1 1 1

0 0 0

1 1 1
0 , 1     ;

wn wn n

n n n

w w n wn n

S L R S L A L g

S L g S L R S L A

  
  

  

  


 
   

 
 

  

  
  (28) 

Typically, the symbol 1L represents a formal 

inverse of the linear operator L. 

The objective of the decomposition method is to 

make possible physically realistic solutions of 

complex systems without the usual modeling and 

solution compromises to achieve tractability. It 

essentially combines the fields of ordinary and 

partial differential equations. The ADM decomposes 

a solution in to an infinite series which converges 

rapidly to the exact solution. The convergence of the 

ADM has been investigated by a number of authors 

(Abbaoui and Cherruault (1994),Cherruault 

(1989),Cherruault and Adomian (1993). This 

method can be applied directly for all types of 

differential and integral equations, linear or 

nonlinear, with constant or variable coefficients. The 

nonlinear problems are solved easily and elegantly 

without linearizing the problem by using ADM. The 

technique is capable of greatly reducing the size of 

computational work while still it provides an 

efficient numerical solution with high accuracy. It 

also avoids linearization, perturbation and 

discretization unlike other classical techniques. 

5. CONVERGENCE ANALYSIS OF 

THE ADOMIAN DECOMPOSITION 

METHOD 

We recall the following theorem from Mavoungou 

and Cherruault (1992) which guarantees the 

convergence of Adomians method for the general 

operator equation given by w w wLS RS NS g   . 

Consider the Hilbert space 
2(( ,β) [0, ])H L T 

defined by the set of applications 

:   ( ,β) [0, ]wS a T R  with 

2

( ,β) [0, ]

(η,ξ)w

a T

S



                                                 (29) 

Let us denote,  

,

, sin

w
w w

w w
w w

S
LS NS

T

S S
S RS

X X X






     
    
     

  

      sin

w w w

w w
w

TS NS RS

S S
S

X X X


 

     
    
     

                       (30) 

Theorem 1. Let w w wTS RS NS   be a hemi –

continuous operator in Hilbert Space H and satisfy 

the following, 

Hypothesis( 1H ) : 
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2
1 2 1 2 1 2

1 2

( , )

0, ,

w w w w w w

w w

TS TS S S k S S

k S S H

   

  
            (31) 

Hypothesis ( 2H ) :Whatever may be M > 0, there 

exit constant C(M) > 0 such that for 1 2,w wS S H  
with 

1 2, ,w wS M S M   we have 

1 2 1 2( , ) ( )  

                           

w w w wTS TS w C M S S w

forevery w H

  


            (32) 

Then, for every g ∈ H ,the nonlinear functional 

equation w w wLS RS NS g   admit a unique 

solution wS H Furthermore, if the solution wS  

can be represented in a series form given by

0
λn

w wnn
S S




 , then the Adomian 

decomposition scheme corresponding to the 

functional equation under consideration converges 

strongly to wS H , which is the unique solution to 

the functional equation. 

proof: verification of hypothesis( 1H ) 

  21

21

2
2 2

1 2

1 2

1 2 1 2

2
2 2

1 22

1 2 1 2

1
( )

2

                       sin ( )

( , )

1
( ),

2

sin ( ),

ww

ww

w w

w w

w w w w

w w

w w w w

TS TS S S
X

S S
X

TS TS S S

S S S S
X

S S S S
X






   




 



  

 
   
  

 
    

 

                    (33) 

Since 
2

2X




is a differential operator in H, then there 

exit a constant “δ” such that, 

According to Schwartz inequality, we get 

2 21 1

2
2 2 2 2

1 22

1 1
( )  

2 2w ww w w wS S S S S S
X


 

    
  

 (34) 

1 2 1 2

1 2 1 2

sin ( ),

sin  

w w w w

w w w w

S S S S
X

S S S S





 
  

 

  

                            (35) 

Now, by using mean value theorem, then we have 

1 2 1 2

2
1 2

sin ( ),

sin

w w w w

w w

S S S S
X

S S





 
   

 

 

                        (36) 

For          1 2  and   w wS M S M      

Therefore                                                      

21

2
2 2

1 22

2
1 2

1
( ),

2 ww w w

w w

S S S S
X

M S S

 
   
  

 

                            (37) 

1 2 1 2

2
1 2

sin ( ),

sin  

w w w w

w w

S S S S
X

S S





 
   

 

 

                        (38) 

Substituting (37) and (38) in (33), 

2
1 2 1 2 1 2( , )w w w w w wTS TS S S k S S                (39) 

Where sink M M   .Hence we find the 

Hypothesis ( 1H ). For Hypothesis ( 2H ), 

 1 2,w wTS TS w   

21

2
2 2

1 22

2
1 2

1 2

1
( ) sin ( ) ,

2

sin

( )

ww w w

w w

w w

S S S S w
XX

M S S w

C M S S w



 

   
      
    

 

 

 (40) 

Where ( ) sinC M M   and therefore 

hypothesis ( 2H ) holds. 

6. SIMULATIONS RESULT 

ADM in T - direction 

Using the analysis of Adomian Decomposition 

Method, (21) can be written in operator form T wL S  

as 

( , ) ( ( , )) sinT w X w X wL S X T L NS X T L S         (41) 

Operating inverse operator on both sides of Eq. (41), 

it gives 

1
0( , ) ( ) ( ( ( , ))

                                sin )

w w T X w

X w

S X T S X L L NS X T

L S

 


          (42) 

where 0( , )  and ( )w
w w w

S
NS X T S S X

X

 
  

 
can be 

solved subject to the corresponding initial condition

 ( ,0) XS X f X e  . It is well known form (25) 

that the solution of (21) can be written in the series 

form as follows 

0

( , ) ( , )w wn

n

S X T S X T




                                             (43) 

where 1 2 3, , ...w w wS S S are the saturation of the 

different fingers at any distance X and any time t > 0 

and the non linear term can be represented as

0

( , ) ,w n

n

NS X T A




   where nA s are Adomian’s 

special polynomials to be determined and defined by 

(26). 

Following the analysis of Adomian decomposition  
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Table 2 Saturation vs. Time for Distance Fixed at X=0.1 

X=0.1 

T/X =00 =150 =300 =450 =600 

T=0.001 0.9065 0.9062 0.9060 0.9058 0.9057 

T=0.002 0.9081 0.9077 0.9072 0.9069 0.9066 

T=0.003 0.9098 0.9091 0.9084 0.9079 0.9074 

T=0.004 0.9115 0.9105 0.9097 0.9089 0.9083 

T=0.005 0.9132 0.9120 0.9109 0.9099 0.9092 

T=0.006 0.9149 0.9135 0.9121 0.9110 0.9101 

T=0.007 0.9166 0.9150 0.9134 0.9121 0.9110 

T=0.008 0.9184 0.9165 0.9147 0.9131 0.9119 

T=0.009 0.9201 0.9180 0.9159 0.9142 0.9129 

T=0.010 0.9219 0.9194 0.9172 0.9153 0.9138 

 
Table 3 Saturation vs. Time for Distance Fixed at X=0.2 

X=0.2 

T/X =00 =150 =300 =450 =600 

T=0.001 0.8201 0.8199 0.8197 0.8195 0.8194 

T=0.002 0.8214 0.8210 0.8206 0.8203 0.8200 

T=0.003 0.8228 0.8222 0.8216 0.8210 0.8207 

T=0.004 0.8242 0.8233 0.8225 0.8225 0.8213 

T=0.005 0.8256 0.8245 0.8235 0.8226 0.8220 

T=0.006 0.8270 0.8257 0.8245 0.8234 0.8226 

T=0.007 0.8284 0.8268 0.8254 0.8242 0.8233 

T=0.008 0.8298 0.8280 0.8264 0.8250 0.8240 

T=0.009 0.8312 0.8293 0.8274 0.8259 0.8247 

T=0.010 0.8327 0.8305 0.8284 0.8267 0.8254 

 
 

Table 4 Saturation vs. Time for Distance Fixed at X=0.3 

X=0.3 

T/X =00 =150 =300 =450 =600 

T=0.001 0.7419 0.7417 0.7415 0.7414 0.7413 

T=0.002 0.7430 0.7426 0.7423 0.7420 0.7417 

T=0.003 0.7441 0.7436 0.7430 0.7426 0.7422 

T=0.004 0.7453 0.7445 0.7438 0.7432 0.7427 

T=0.005 0.7464 0.7454 0.7445 0.7437 0.7432 

T=0.006 0.7475 0.7464 0.7453 0.7443 0.7436 

T=0.007 0.7487 0.7473 0.7460 0.7450 0.7441 

T=0.008 0.7498 0.7483 0.7468 0.7456 0.7446 

T=0.009 0.7510 0.7492 0.7476 0.7462 0.7451 

T=0.010 0.7522 0.7502 0.7484 0.7468 0.7456 

 
 

method as discussed in Abbaoui and Cherruault 

(1994),Gabet (1994) for the determination of the 

components ( , )wnS X T  of ( , )wS X T ,we set the 

recursive relation as 

0

1

0

( , )

sin

X
wn

n

T X n X w
n

S X T e

L L A L S













  
  

    





                                 (44) 
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Table 5 Saturation vs. Time for Distance Fixed at X=0.4 

X=0.4 

T/X =00 =150 =300 =450 =600 

T=0.001 0.6712 0.6710 0.6709 0.6707 0.6706 

T=0.002 0.6721 0.6718 0.6715 0.6712 0.6710 

T=0.003 0.6730 0.6725 0.6720 0.6713 0.6713 

T=0.004 0.6740 0.6733 0.6726 0.6720 0.6716 

T=0.005 0.6749 0.6740 0.6732 0.6725 0.6719 

T=0.006 0.6758 0.6748 0.6738 0.6729 0.6723 

T=0.007 0.6767 0.6755 0.6744 0.6734 0.6726 

T=0.008 0.6777 0.6763 0.6750 0.6738 0.6730 

T=0.009 0.6786 0.6770 0.6756 0.6743 0.6733 

T=0.010 0.6796 0.6778 0.6762 0.6747 0.6736 
 

 

Table 6 Saturation vs. Time for Distance Fixed at X=0.5 

X=0.5 

T/X =00 =150 =300 =450 =600 

T=0.001 0.6073 0.6071 0.6070 0.6068 0.6067 

T=0.002 0.6080 0.6077 0.6074 0.6071 0.6070 

T=0.003 0.6088 0.6083 0.6078 0.6075 0.6072 

T=0.004 0.6095 0.6089 0.6083 0.6078 0.6074 

T=0.005 0.6103 0.6095 0.6087 0.6081 0.6076 

T=0.006 0.6110 0.6101 0.6092 0.6084 0.6078 

T=0.007 0.6118 0.6107 0.6096 0.6087 0.6081 

T=0.008 0.6125 0.6113 0.6101 0.6091 0.6083 

T=0.009 0.6133 0.6119 0.6105 0.6094 0.6085 

T=0.010 0.6141 0.6125 0.6110 0.6097 0.6087 

 
 

Where 0 ( ,0)X
w wS e S X  from the initial 

condition and  1
, 1 (( ) sin ).w k T k X w X

S L A S
   In 

view of the Eq. (44), the approximate solution in the 
series form is given by 

0 1 2 3 4 5

6 7 8 9

3 7

9 4 6

2 8 9

5 5

( , )

                + ...

1530966437
sin

540

1941781969 1238328
sin sin

280 5

5971984384 1
sin sin

540 362880

1796875 4
sin si

144 315

w w w w w w w

w w w w

X

X X

X X

X

S X T S S S S S S

S S S S

e

e e

e e

e



 

 





 

 



     

   


  




 

  8 2

7 3 6 4
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sin sin

560 135

61239884500 1
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
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2

176
4sin 27sin

3

1
sin 4sin 9

2
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e e e T

e e e T

e e T e

 
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

  
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  


  



 
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    

      (45) 

ADM in X direction 

We can use the boundary condition if we proceed in 

X - direction which gives constant solution provided 

1f and 2f are constant and gives trivial solution if 1f  

and 2f  are zero. 

From Figs. 4,5,6,7 and 8 it is apparent that Saturation 

of water increases as time increases at a fixed point 

X = 0.1, X = 0.2, X = 0.3, X = 0.4 and X = 0.5 for 

inclination , 0   α = 15◦, 30  , 45  ,

60  and subsequently decreases with time as 

inclination of the bed increases results decrease in 

saturation and recovery rate. Hence it may conclude 

that the saturation of wetting phase increases with 

time for zero inclination and small inclination results 

increase the recovery rate of the oil reservoir but as 

the inclination increases it results lower the 

saturation rate implies less recovery rate of the oil 

reservoir. 

7. CONCLUSION 

Convergence of the Adomian decomposition scheme 

for the case of fingering phenomena has been proved 

and studied the variation of saturation of water in X 

and T direction for particular parametric values of the 

parameter in dimensionless form. Eq. (45) represents 

the saturation of wetting phase for fingering 

phenomena with the inclination, dimensionless time 

and distance. Table (2,3,4,5,6) and graph (4,5,6,7,8) 

shows that the saturation of wetting phase be 

maximum for zero inclination implies more recovery 

rate with time. Similarly as the inclination of the field 

increases, saturation rate be minimum results less 

recovery rate, which is physically consistent with the 

real word phenomena. 
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