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ABSTRACT 

A partly open vertical disk-cylinder system, with an annular top lid, is used to model numerically the 

characteristics of axisymmetric swirling flows with stagnation and associated flows reversal; commonly 

referred to as vortex breakdown. The flows are driven by the bottom disk uniform rotation and controlled by 

the competition between the no-slip and stress-free surface conditions applied at the top. Depending on the 

radial extent of the free surface, distinct regions of toroidal, corner and on-axis vortex type flows were identified 

and mapped into a state diagram then discussed. In addition, the impact of the cavity aspect ratio on the onset 

conditions of stagnation and breakdown was highlighted. Moreover, the study explored the influence of a 

diffusion driven meridian circulation, induced by the sidewall differential rotation, which is revealed to 

constitute an effective non intrusive kinematic means of flow control. 
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NOMENCLATURE 

𝐻 height  

𝑘 thermal diffusivity coefficient 

𝑃𝑟 Prandlt number 

𝑅 radius  

𝑅𝑒 rotational Reynolds number 

𝑟𝑖 inner radius  

𝑆 sidewall rotation rate ratio 

 

  

𝛤 angular momentum (circulation) 

Lℎ cavity aspect ratio 

L𝑟 lid radius ratio 

𝜐 fluid kinematic viscosity coefficient 

𝛹 stream function 

𝛺 disk rotation rate 

W𝑏 bottom disk rotation rate 

W𝑙 cylindrical sidewall rotation rate  

 

 

1. INTRODUCTION  

Disk-cylinder systems constitute benchmark devices 

to model certain fundamental aspects of 

hydrodynamics, which involve swirling flows with 

stagnation and associated flow reversal; frequently 

encountered in practical application (Lucca et al. 

2001; Herrada et al. 2014). They present well 

defined boundary conditions and involve minimum 

flow control parameters which, to some extent, 

render them amenable to numerical   modeling. 

The characteristics of confined vortex flows depend 

strongly on the boundary conditions. Spohn et al. 

(1993, 1998) explored the case when a rigid cover of 

a vertical cylinder is replaced by a free surface and 

conducted extensive experimental visualizations to 

determine the characteristics of the  

model flow driven by the bottom disk uniform 

rotation. Their findings evidenced the sensitivity of 

the free surface and covered new aspects of flow 

topology in comparison with the rigid cover case; in 

particular, the occurrence of vortex rings and toroidal 

vortices attached to the free surface. Besides, they 

established a detailed flow-regime diagram which 

mapped distinct breakdown regions in steady and 

oscillatory flow regimes; based on the couple of 

main parameters (𝛤, 𝑅𝑒)  where 𝛤 = 𝐻 𝑅 ⁄  

(height/radius) is the cavity aspect ratio and 𝑅𝑒 =
𝛺𝑅2 𝜐⁄  the rotational Reynolds number ; 

Ω and υ being the disk rotation rate and fluid 

kinematic viscosity coefficient respectively. 

Numerically, Daube (1991) performed axisymmetric 

time-dependent simulations, assuming flat free 

surface, which predicted the occurrence of certain 

weak toroidal flows, not observed in the 
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experiments. Spohn et al. (1993, 1998) pioneering 

work motivated numerous subsequent numerical 

investigations; most of which considered non 

deformable and stress free surface conditions. Of 

note, Lopez (1995, 2004) demonstrated that steady 

free surface toroidal vortex structures can be 

generated under reflection symmetry conditions; 

analogous to those induced by the exact co-rotation 

of coaxial disks shrouded by a stationary sidewall. 

Piva et al. (2005), restricted the rotation to a central 

part of the end disk while maintaining the remaining 

annular part sealed to the stationary sidewall; 

concluding that the no-slip conditions on the annular 

periphery altered considerably the flow topology and 

controlled efficiently the formation of the vortex 

structures. An analogous geometry was explored by 

Yu et al. (2007) to  characterize by simulation the 

steady flow patterns in micro-biorectors; 

highlighting the strong influence of the cylinder-disk 

ratio to control the formation of the desired vortex 

breakdown which ensures favorable environment for 

cell structure. Serre et al. (2007) performed non-

linear 3D computations and transition to time-

dependent regimes in the case of a deep cavity  (H/R 

= 4) ; concluding that the free surface conditions  

promote the onset of unsteadiness, with an estimate 

of a critical Reynolds number 15% lower than that 

obtained in the rigid cover case. Without resorting to 

any symmetry properties at the surface, Bouffanais 

and Jacono (2009) carried out a series of 

computations, considering flow models with flat and 

moving free-surface in the transitional regime. They 

reported a significant disagreement between their 

findings and those presented by Piva et al. (2005) 

who based their model on first order approximations 

as regards to surface deflection. When a stationary 

thin rod is added along the cavity axis, Cabeza et al. 

(2010) showed that the critical Reynolds number for 

the occurrence of vortex breakdown decreases over 

an initial small range of the rod radius ratio while an 

increase evidenced outside this range. More recently, 

Kahouadji et al. (2014), performed experimental and 

axisymmetric numerical investigations to model the 

free surface shape. They employed curvilinear 

coordinates transformation associated with an 

iterative process to simultaneously solve the 

equations of motions under zero normal stress 

condition and achieved good agreement with 

experiments in the case of large surface deflection.  

Flows in rotating cylindrical pools, controlled by the 

differential rotation of a small disk mounted on the 

surface, were recently studied by Wu et al. (2013) 

who considered 3D numerical simulations in steady 

and oscillatory regimes. Their results revealed the 

strong combined impact of the rotating disk radius 

ratio and the cavity aspect ratio on the flow topology 

and transition regimes. 

In the same context, the work reported here is 

numerical and concerns the axisymmetric flows 

driven by the bottom disk rotation of a disk-cylinder 

system with partly open surface. It is structured into 

three main sections; the first being devoted to a 

review of selected past works. The next section sets 

the physical problem, describes the model equations 

and boundary conditions as well as the methodology 

of solution. The last section provides the results and 

discussion of three model flows. In particular, for 

validation, the first considers the well established 

configuration of a fully open cavity with rotating 

bottom. This is extended to the geometry with a 

partly free surface to highlight the flow sensitivity to 

the lid radius ratio. Then, the sidewall differential 

rotation is implemented as a kinematic means to 

control the onset of the vortex structures. Finally, 

concluding remarks summarize the main findings.    

2. FORMULATION  

2.1 Physical Problem and Control 

Parameters  

Consider a partly open vertical cylinder of height H 

and radius R, filled with an incompressible viscous 

fluid of kinematic viscosity  and thermal 

diffusivityk. The cavity is bounded at the top by an 

annular lid sealed to the sidewall, with inner and 

outer radii  𝑟𝑖  and R, respectively, and a flat non 

deformable free surface extending over the range 

0 ≤ 𝑟 < 𝑟𝑖  as shown schematically in (Fig. 1). 

The flow is driven by the bottom disk uniform 

rotation and/or the cylindrical sidewall at rotation 

rates Ωb and Ωl, respectively. 
 

 
Fig. 1. Schematic of the meridian cross-section of 

the partly open cylinder. 

 
The governing equations are the unsteady 

axisymmetric Navier-Stokes equations in cylindrical 

coordinates (𝑟, 𝜃, 𝑧), written in dimensionless form 

by scaling time, length and velocity with 

1 𝛺𝑏⁄ , 𝑅 and 𝛺𝑏𝑅  respectively. These are then 

expressed conveniently in a stream function-

vorticity formulation (Piva et al. 2005; Saci et al. 

2008); leading to the following non dimensional 

velocity field which satisfies continuity and the 

corresponding vorticity field, in terms of the stream 

function 𝜓 and angular momentum 𝛤 = 𝑢𝜃𝑟, 

1 1
( , , ) ( , , - )

r z
V u u u

r z r r r
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denotes the 

modified laplacian operator and 
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/ /
r z

u z u r       . 

The dimensionless vorticity and circulation transport 

equations are respectively, 

2r
r z 3 2

2

r z

u 2 1
u u

t r z r r z Re r

1 2
u u

t r z Re r r

    


     


   


     
       

     

    
     

    

The Poisson equation may be written in the form 

2 2
r

r r



 


   



 

2 2

2 2

2 1

r rr z


  
  

 
is the laplacian operator.  

The main dimensionless physical and geometrical 

parameters which characterize the flow are the 

Reynolds number, the cavity aspect ratio, the lid 

radius ratio and finally the sidewall rotation rate ratio 

defined respectively as 

2

b h r i lRe R / u , H / R, r / R,S /
b

W L L W W   

The Prandlt number is𝑃𝑟 = 𝜐 𝑘⁄ .  

2.2 Boundary Conditions  

To solve numerically the resulting dimensionless 

system of equations in the bulk domain [0,1]× [0, Λh] 
boundary and initial conditions are required. These are 

based on the no slip conditions applied to solid walls 

and regularity assumption on the cavity axis. 

Reflexion symmetry is considered on the partly open 

surface, assumed flat stress-free, (Herrada et al. 2014; 

Hewitt et al. 2008; Saci et al. 2008) over the range of 

the flow parameters considered. Initial conditions 

consider the fluid at rest and the bottom disk is 

impulsively rotated to a constant angular speed.  

These conditions take explicitly the form: 

At the bottom disk: 

2
2

2

1
z=0, 0 < r < 1, =0, = r ,  

r z


  





 

At the sidewall:   

2
2

h 2

1
0 z ,r 1, 0, S r ,

r r


L  


      


 

Along the cavity axis:  

hr 0, 0 z , 0, 0, 0 L        

At the top annular lid: 

2

h r 2

1
z , r 1, 0, 0,

r z 


L L 


     


 

At the free surface: 

hz ,0 r , 0, 0, 0
r z 


L L 


     


 

2.3  Method of Solution and Validation  

The solution algorithm is based on a three level time-

marching finite difference scheme, used and tested 

on confined internal swirling flows with breakdown; 

which has been extended to account for stress-free 

surface conditions under reflection symmetry; see 

Saci et al. (2008) for detailed accounts and 

implementation. With appropriate time and space 

mesh grids, the time dependent solutions of the 

circulation and the vorticity transport equations were 

calculated until an ultimate steady state is essentially 

reached. Poisson’s elliptic equation is iterated at each 

time level and, subsequently, the azimuthal vorticity 

component is updated at the walls. Most calculations 

have been carried out in a uniform mesh grid of 

100 × 100𝛬ℎ elements with a typical initial time 

step δt = 10−4; relaxed as the solution progressed in 

time. The accuracy of the scheme is first assessed by 

comparison with the benchmark case of fully open 

cylinder ( 𝛬𝑟 = 1) explored experimentally and 

numerically by Spohn et al. (1998) and Piva et al. 

(2005). Besides, for a selected couple of flow 

parameters, additional check was also done by 

comparing the ultimate steady solution approached 

for large times with the solution obtained by solving 

directly the steady equations, by means of the 

standard successive over relaxation method.  

3. RESULTS AND DISCUSSION 

Solutions were considered over the selected ranges 

of parameters; depending on the cavity aspect ratio 

and radius ratio:  

200 Re 2500,0.5 2.5,0 1, 1 S 1
rh

L L          

3.1 Flows in an Open-Top Cylinder  1rL  

The flow in the configuration corresponding to the 

particular case Λr = 1 , Pr = 1  is well 

documented (Spohn et al. 1998; Piva et al. 2005; 

Kahouadji et al. 2014) and is described in this 

section. A primary outward motion is imparted to the 

viscous fluid by the bottom disk uniform rotation, 

which results in the development of an Ekman layer. 

The stationary sidewall imposes kinematics 

constraints; causing an axial motion towards the free 

surface and the formation of a shear layer which 

thickens with increasing height, unlike the case of a 

rigid top surface model. Along the free surface, 

neglecting losses by viscous dissipation, the angular 

momentum is almost conserved. There, fluid spirals 

radially inwards up to the axial core, with no 

boundary layer, then flows axially downwards, due 

to the Ekman pumping on the rotating disk. This 

results in a large scale anticlockwise meridian 

circulation which redistributes the angular 

momentum to the interior and induces a concentrated 

axial core region. This latter, beyond a threshold 

rotation rate, breaks and gives rise to a distinct 

clockwise reverse flow region, of weak intensity, 

which may be located on the cavity axis (bubble type 

or on-axis vortex breakdown) between two 

stagnation points at which the axial velocity 

component vanishes (Spohn et al. 1998). As will be 

illustrated in the following sections, along the cavity 

axis, fluid flows upward within the bubble while 

outside it the primary flow is downward.  
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It is well established (Spohn et al. 1998; Piva et al. 

2005; Serre et al. 2007) that increasing Re causes 

spontaneously the occurrence of a clockwise toroidal 

type of reverse flow, attached to the free surface. 

Further increase of the disk rotation rate causes 

oscillatory regimes (Serre et al. 2007). 

When completely detached from the cavity axis, the 

secondary structure is bounded at the surface by two 

stagnation circles which intersect the meridian plane 

to define the free surface stagnation points at which 

the radial velocity component vanishes. Fluid 

between these points flows radially outward while 

the primary flow outside them is inward. It is worth 

mentioning that the associated azimuthal velocity 

component frequently displays an inflection point 

which coincides with the reverse flow region. 

Besides, the corresponding vortex or circulation 

lines (lines of constant 𝛤), not shown for brevity,  

which indicate the local direction of the vorticity, 

meet orthogonally the surface considered non 

deformable and stress-free. Their bending at the free 

surface in the radial direction, observed with 

increasing  𝑅𝑒 , generates an axial gradient of the 

angular momentum which drives the flow radially 

and strengthens the meridian circulation. When this 

latter is large enough the flow stagnates.  

In (Fig.2), for the sake of comparison with 

experiments of Piva and Meiburg (2005) , we 

represent both the right and left meridian streamlines 

(symmetric with respect to the cavity axis); obtained 

by modeling the free surface flow characterized 

by: 𝛬𝑟 = 1, 𝛬ℎ = 1 and  𝑅𝑒 = 1120 . The flow 

topology is in a good qualitative agreement with the 

axisymmetric flow pattern reported in the above 

reference and obtained by visualization of dye 

injection. It is also in accord with the selected 

numerical results of Kahouadji et al. (2014). The 

streamlines depict clearly two distinct axisymmetric 

regions: a toroidal structure attached to the surface 

imbedded into an ambient primary meridian flow. 

The secondary flow is of corner type, characterized 

by an upstream free surface stagnation point and a 

downstream point located on the cavity axis. 
  

 
Fig. 2. Meridian streamlines for 𝜦𝒓 = 𝟏, 𝜦𝒉 =
𝟏, 𝑹𝒆 = 𝟏𝟏𝟐𝟎. In qualitative agreement with 

experiments of Piva et al. (2005). 

 

3.2  Flows in a Partly Open Cavity  

As mentioned above, the modified disk-cylinder 

system is characterized by a top annular lid 

h r( z , r 1)L L    sealed to the cylindrical 

sidewall, and a partly free surface with radial extent 

0 ≤ 𝑟 < 𝛬𝑟. The particular cases 𝛬𝑟 = 0 and 𝛬𝑟 =
1  correspond respectively to the benchmark 

configurations of enclosed and fully open cylinder. 

To the authors knowledge, the intermediate range 

0 < 𝛬𝑟 < 1 does not appear to have been explored 

in the literature. The effect of lid radius-ratio is best 

viewed with reference to (Fig.3); which qualitatively 

depicts the meridian streamlines for four radius-

ratios and selected parameters: 𝑅𝑒 = 1250,  𝛬ℎ =
1. The unit cavity aspect ratio is adopted here for 

validation with previous experiments carried out in 

the test case of fully open cavity (𝛬𝑟 = 1). For this 

couple of parameters, this latter configuration 

exhibits an axisymmetric toroidal vortex attached to 

the surface; in qualitative agreement with the 

findings reported in the literature (Spohn et al. 1998; 

Piva et al. 2005). The presence of the annular lid 

imposes no slip conditions which affect the angular 

momentum transfer towards the adjacent free surface 

as well as the radial pressure gradient balance. 

Consequently, the onset conditions of flow 

stagnation and breakdown are significantly altered 

with decreasing  Λr.  In particular, the off-axis 

toroidal structure moves radially towards the cavity 

axis to form a corner vortex whose downstream on-

axis stagnation point extends axially downwards as 

clearly illustrated for 𝛬𝑟 =  0.8; 0.6; 0.4. A further 

decrease of 𝛬𝑟  causes the occurrence of a distinct 

bubble type vortex breakdown located entirely on the 

cavity axis as defined in the above section and 

illustrated in (Fig.3) for 𝛬𝑟 = 0.3 . A further 

decrease of 𝛬𝑟 , over the remaining free surface 

range, no breakdown occurs as the annular lid no slip 

condition predominates over the slip condition 

assumed on the free surface part. This is shown for 

the selected value Λr = 0.2. 

The impact of the radius ratio on the corresponding 

free surface velocity field is depicted in (Fig.4) for 

five uniformly spaced values of L𝑟  , when 𝑅𝑒 =
1250,  𝛬ℎ = 1.   For fixed L𝑟  , the swirl and the 

radial inflow are of the same order of magnitude in 

the vicinity of the annular lid edge and both intensify 

radially inward to reach a maximum ( 𝑢𝜃𝑚𝑎𝑥 ≳

2 𝑢𝑟𝑚𝑎𝑥 ) before they decay rapidly towards the 

cavity axis.  Besides, as L𝑟 decreases, it is remarked 

that both 𝑢𝜃𝑚𝑎𝑥 and  𝑢𝑟𝑚𝑎𝑥 decrease almost linearly 

and shift toward the cavity axis. 

In addition, the associated axial velocity distribution 

𝑢𝑧 , along the cavity axis, is illustrated (Fig.5), for the 

same parameters; namely, 𝑅𝑒 = 1250,  𝛬ℎ = 1. It is 

observed that the velocity component 𝑢𝑧 vanishes at 

each stagnation point before changing sign; 

indicating a change of axial flow direction which 

evidences the vortex breakdown occurrence.      

Further detailed characteristics of the lid radius ratio 

effects are remarked in the ( 𝑅𝑒𝑐 , 𝛬𝑟) state diagram 

of  (Fig.6); established on the basis of a series of 

calculations carried out for the fixed aspect ratio 

 𝛬ℎ = 1; providing  threshold 𝑅𝑒𝑐  values for flow 

stagnation and associated breakdown types. Curves 

(𝑐1),(𝑐2), (𝑐3) denote the bounding curves  for onset 

of a bubble type, a corner structure and a completely 

detached toroidal vortex respectively. 
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𝛬𝑟 = 1           𝛬𝑟 = 0.8 
 

           

𝛬𝑟 = 0.6           𝛬𝑟 = 0.4 
 

              

𝛬𝑟 = 0.3           𝛬𝑟 = 0.2 
 

Fig. 3. Meridian streamlines showing the effect of lid radius-ratio 𝜦𝒓 ; 𝑹𝒆 = 𝟏𝟐𝟓𝟎, 𝜦𝒉 = 𝟏 (N.B: the left 

vertical boundary is the cavity axis). 

 

 
Fig. 4. Radial and tangential velocity distribution 

at the free surface ; 𝑹𝒆 = 𝟏𝟐𝟓𝟎,  𝜦𝒉 = 𝟏. Curves 

    
refer to 𝒖𝒓 for  𝜦𝒓 = 𝟎. 𝟐, 𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏. 

respectively. The corresponding curves with 

solid symbols illustrate the profiles of 𝒖𝜽. 

 
Fig. 5. Axial  velocity distribution 𝒖𝒛 on the 

cavity axis for 𝑹𝒆 = 𝟏𝟐𝟓𝟎, 𝜦𝒉 = 𝟏. Curves  

, , ,  ,   refer to 𝒖𝒛 for 𝜦𝒓 =
𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏. respectively. 
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For the prescribed range of parameters mentioned 

above, the mapping indicates no breakdown 

occurrence over the range 0 ≤ 𝛬𝑟 < 0.2 and that the 

free surface sensitivity intensifies mainly over the 

intermediate approximate range  0.2 < 𝛬𝑟 < 0.8  ; 

with 𝑅𝑒𝑐 lowered sharply by almost five times in the 

interval 0.2 < 𝛬𝑟 ≤ 0.6.  Also remarked in (Fig.6), 

curves (𝑐2  ) and (𝑐3) are very close one another over 

the entire range of parameters considered; indicating 

that the corner vortex pattern occurs within a very 

sharp range of disk rotation rate. Above curves (𝑐2 ) 

and (𝑐3) the diagram exhibits a region of toroidal 

vortex partern over the approximate range 0.4 <
𝛬𝑟 ≤ 1 . It is worth mentioning that a vortex 

formation attached to the free surface is spontaneous 

and does not necessarily result from a migration 

process in accord with the statements reported in 

Hewitt et al. (2008) who investigated a related 

problem of confined swirling flows driven by the co-

rotation of co-axial disks.  

 

 
Fig. 6. (𝜦𝒓, 𝑹𝒆𝒄) State diagram for Λh = 1; 

mapping regions of bubble, corner (very narrow 

region), and toroidal vortex patterns with lower 

bounding curves (𝐜𝟏), (𝐜𝟐)and  (𝐜𝟑) respectively. 

 

3.3 Effects of the Cavity Aspect Ratio  

The sensitivity of the free surface to radius ratio 

depends strongly on the cavity aspect ratio 𝛬ℎ. This 

is evidenced by the second (  𝑅𝑒𝑐 , 𝛬𝑟) diagram 

illustrated in (Fig.7); mapping regions with and 

without on-axis bubbles and their corresponding 

bounding curves over the range 0 ≤  𝛬𝑟 ≤ 1 for six 

aspect ratios; selected in the interval 0.5 ≤  𝛬ℎ ≤
2.5. All the results presented in this section for the 

cases 𝛬𝑟 = 1 and 𝛬𝑟 = 0  have been validated with 

the literature (Spohn et al. 1998; Piva et al. 2005). 

As mentioned above, we recall that, to our 

knowledge, the intermediate range 0 <  𝛬𝑟 < 1 

does not appear to have been investigated in previous 

related studies. However, with decreasing   𝛬𝑟  a 

boundary layer forms on the annular lid and one 

would expect a reduction of angular momentum 

transfer towards the free surface part which would 

cause an increase of 𝑅𝑒𝑐 and delays the occurrence 

of reverse flow occurrence. In such a situation we 

conjecture that the symmetry assumptions would be 

reasonable; although experimental investigations 

remain necessary for validation. The established 

diagram (Fig.7) indicates, as expected, for relatively 

high aspect ratios; namely,  𝛬ℎ = 1.5, 2. , 2.5 , a 

gradual and steady  decrease of 𝑅𝑒𝑐 with increasing 

free surface radial extent over the range 0 ≤  𝛬𝑟 ≤
1;  with an estimate of 15% drop recorded for each 

Λℎ . The corresponding bounding curves 
(𝑐∗4), (𝑐∗5) and (𝑐∗6) exhibit each a maximum 𝑅𝑒𝑐 

reached for 𝛬𝑟 = 0; denoting the closed cylinder test 

case and their regular spacing indicates an almost 

linear variation of  𝑅𝑒𝑐 for fixed lid radius ratio 𝛬𝑟. 

However, for the relatively lower aspect ratios; 

namely, 𝛬ℎ = 0.5, 0.75 and  1 , we observe a very 

different trend as no breakdown is formed over the 

range 0 ≤  𝛬𝑟 < 0.15; revealing a less sensitive free 

surface than the previous counterparts. In fact, for the 

prescribed range of aspect ratios, curves 
(𝑐∗1), (𝑐∗2) and (𝑐∗3) show a very rapid decrease 

of Rec  with increasing  𝛬𝑟  over the range 0.15 <
 𝛬𝑟 < 1 ; with  a drop of 𝑅𝑒𝑐  by a factor of 10 

recorded approximately. Unlike the previous case of 

relatively higher aspect ratios, it is seen that the 

bounding curves (𝑐∗1), (𝑐∗2)and (𝑐∗3) cross in the 

interval 0.4 ≤  𝛬𝑟 ≤ 0.5 ; indicating on one hand a 

decrease of  𝑅𝑒𝑐  with decreasing Λℎ  over 0.45 <
 𝛬𝑟 ≤ 1  , for fixed 𝛬𝑟 ,  while the inverse trend is 

noted on the other hand over the range 0.2 ≤  𝛬𝑟 <
0.45 . This unexpected result evidences the strong 

dependence of the free surface sensitivity to both lid 

radius-ratio and cavity aspect ratio. Consequently, 

the quantitative findings reported for the fully open 

configuration cannot be systematically extended to a 

partly open lid system.  

 

 
Fig. 7. (𝜦𝒓, 𝑹𝒆𝒄) Diagram, mapping regions of 

onset of breakdown for six cylinder aspect 

ratios; namely, 𝜦𝒉 = 𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏, 𝟏. 𝟓, 𝟐  𝐚𝐧𝐝 

 𝟐. 𝟓 . (𝐜∗𝟏), (𝐜∗𝟐), (𝐜∗𝟑), (𝐜∗𝟒), (𝐜∗𝟓) and (𝐜∗𝟔) 

are the corresponding bounding curves. 

 

3.4  Creeping flow Induced by the Sidewall  

In an attempt to investigate on kinematical means of 

controlling the steady vortex structures described 

above, we proceed to first explore the creeping 

motion generated by the sidewall rotation alone, 

while the bottom disk remained fixed throughout. 

For the purpose, we select the configuration 

𝛬ℎ = 1 , 𝛬𝑟 = 1  and define the corresponding 

Reynolds number 𝑅𝑒𝑙 = 𝛺𝑙𝑅2 𝜐⁄ . 

In the absence of the bottom disk, flow would 

develop towards a state of solid body rotation with 

no meridian secondary circulation. This is not the 

case in the finite geometry which imposes no slip 

conditions on the stationary disk on which develops 

a Bödewadt type boundary layer. In fact, calculations 

revealed a radial inflow motion in the vicinity of the 
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end wall as a result of the unbalanced radial pressure 

gradient, while an outflow is observed away from it. 

A relatively slow meridian circulation is thus 

induced, with upward and downward flow in the 

interior and in the vicinity of the rotating sidewall, 

respectively.  Compared to the intensity of the 

primary rotational motion, this type of secondary 

motion is characterized by a very low velocity 

magnitude but sufficient enough to prevent the 

formation of a state of solid rotation as shown in 

(Fig.8). This latter illustrates the steady three 

dimensional axial distribution of the velocity field, 

obtained by solving the full Navier-Stokes equations, 

resulting from the configuration with rotating 

sidewall and stationary disk for 𝑅𝑒𝑙 = 0.5 and 𝛬ℎ =
1 at the chosen radial location r = 0.5. 

This specific very low parameter Rel characterizes 

typical differential rotation rates within the range 

explored in the next section, required to control the 

vortex patterns. (Fig.8) demonstrates the relevant 

role of the stationary end wall which induces an 

inward flow on the disk (𝑢𝑟 < 0 ), compared to the 

cylindrical configuration with infinite extent which 

leads to solid rotation with no meridian circulation. 

 

 

Fig. 8. Axial distribution of the velocity field 

(𝒖𝒓, 𝒖𝜽, 𝒖𝒛) at 0.5r  ; 
l

Re 0.5 . 

 
In the configuration with stationary disk and rotating 

sidewall, the numerical treatment of the full 

nonlinear Navier-Stokes equations revealed a linear 

dependence of the flow field on small
l

Re . In this 

limited range, the linearization of the full equations, 

neglecting nonlinear transport terms, led to the 

derivation of an analytical solution for the azimuthal 

velocity component 𝑢𝜃(𝑟, 𝑧, 𝑡), in terms of Bessel 

series, by the standard  method of separation of 

variables as used, for instance, by Pesso.T, and S. 

Piva (2015). This is expressed as follows 

    2
ns mn 1 m mn l

m 1 n 1

r, z,t β zu = u +4 B J (α r) sin exp (-λ t /Re )
 
 

Where, ),( zrus  
denotes the limiting steady 

solution given by 

1

1 0

sinh( -sinh( ( -2 ))( )
2

( ) sinh(2 )

                                           

m m hm
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m m m h

z zJ r
u r

J

 

 

 L
   

L  

m and n are integers and m denotes the mth value of 

  for which the Bessel function )(1 J  ( of the 

first kind and first order) is zero. Also,  

2 2 2
,/ 2 ,n h m nn     L  

2

0( ) / ( )(-1)1-
n

mn mB m J    

It is worth mentioning that the steady tangential 

velocity profile ( , )su r z shown in (Fig.8) was also 

deduced using the above analytical expression; 

which provided an additional check on the accuracy 

of the numerical approach in the range of 

linearization.  

3.5 Differential Rotation of the Sidewall 

The main issue addressed in this section concerns the 

effects of sidewall differential rotation on the 

secondary vortex patterns discussed above for the 

selected test case of a fully open vertical cavity, with 

aspect ratio  𝛬ℎ = 1 . We recall that an additional 

parameter is introduced for this purpose; namely, the 

rotation rate ratio = 𝛺𝑙 𝛺𝑏⁄  ; -1 ≤ S ≤ 1. Although a 

series of calculations were conducted for a wide 

range of parameters, the presentation is restricted for 

brevity to two test cases. 

Counter-Rotation 

First, we explore a differential counter-rotation of the 

sidewall on the basic flow which, in accord with 

Spohn experiments (Spohn et al. 1998; Lopez 1995)   

, exhibits a steady toroidal vortex under the couple of 

parameters 𝑅𝑒 = 1250,  𝛬ℎ = 1. It is revealed that a 

very weak counter-rotation rate is sufficient to alter 

considerably the onset of flow stagnation and 

associated reverse flow on the free surface; 

preventing their occurrence as evidenced 

quantitatively in (Fig.9). This latter shows the radial 

velocity distribution along the free surface which, 

under a counter-rotation, directs the flow centrally 

inward toward the cavity axis. 

 

 
Fig. 9. Radial velocity distribution on the free 

surface, under effects of counter rotation; 𝐑𝐞 =
𝟏𝟐𝟓𝟎, 𝚲𝐡 = 𝟏. Rotation rate ratio 𝐒 =

𝟎, −𝟎. 𝟎𝟑𝟔, −𝟎. 𝟏𝟎𝟑 as  indicated. 

 

Besides, results indicated that an increase of the 

counter-rotation rate generates flow separation on 

the sidewall without breakdown; giving rise to a 

counter-rotating cell whose strength and extent  
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(a1): S =-0.116             (a2): S =-0.116 

 

                 

(b1): S =-0.9             (b2) : S =-0.9 

Fig. 10. Effect of counter-rotation; (a1, b1): Streamlines, (a2, b2): iso-circulations for Re = 600, Λh = 1. 

The rotation rate ratio S is indicated. 

 

 

depend on S. As |𝑆| increases, the cell dominates the 

bulk flow and confines the end disk effects to a 

narrow region as displayed in (Fig.10) by the non 

uniformly spaced meridian streamlines for 𝑅𝑒 =
600,  𝛬ℎ = 1. The corresponding vortex lines (iso-

circulations), which indicate the local direction of 

vorticity, are normal to the free surface and exhibit 

clearly the two distinct counter-rotating cells (broken 

lines and solid contours are of opposite sign) 

separated by a transition curve 𝛤 = 0  (Fig.10 b1, 

b2); which tends to coincide with the location of the 

stagnation curve 𝛹 = 0  (Fig.10 a1, a2) as 
|𝑆| increases. 

Co-Rotation 

For the co-rotation case, unlike its above 

counterpart, calculations revealed that under very 

weak rotation rate ratios, the diffusion driven 

circulation induced by the sidewall shear flow 

enhances the occurrence of axial stagnation points 

and vortex bubbles while higher rotation rates 

prevent their occurrence as viewed in (Fig.11), for 

the selected parameter 𝑅𝑒 = 430, 𝛬ℎ = 1. Starting 

with a configuration 𝑆 = 0 without any breakdown 

(Fig.11a), an axial bubble is formed when 𝑆 =
0.004   which widens and migrates towards the 

surface with increasing |𝑆| before vanishing there, 

as shown for  𝑆 = 0.325 .  

 

4. CONCLUDING REMARKS 

Axisymmetric vortex flows, driven by the bottom 

disk of a partly open-top up-right cylinder, with 

aspect ratio 𝛬ℎ and annular lid radius ratio 𝛬𝑟, were 

numerically studied. The study provided flow 

characteristics over the intermediate range  0 <
 𝛬𝑟 < 1 ; extending to some extent the findings 

generally restricted to the fully open ( 𝛬𝑟 = 1)  and 

closed (𝛬𝑟 = 0) configurations.  

The onset of stagnation and associated flow reversals 

depend strongly on the competition between the no-

slip and stress free surface conditions applied at the 

cavity top boundary. Numerical predictions showed 

that increasing the free surface radial extent (𝛬𝑟) 

promotes the onset of toroidal vortices attached to 

the free surface but not to its adjacent annular lid. 

Besides, the impact of the aspect ratio 𝛬ℎ was also 

highlighted over the selected range 0.5 < 𝛬ℎ ≤ 2.5 . 

In particular, over the sub-range 1 < 𝛬ℎ ≤ 2.5 , a 

regular and steady decrease of 𝑅𝑒𝑐  with 

increasing  𝛬𝑟  was recorded. However, for the 

remaining relatively lower aspect ratios; 

namely, 0.5 ≤  𝛬ℎ ≤ 1 , no breakdown occurred 

when 𝛬𝑟 < 0.15 ; while very sharp decrease of 𝑅𝑒𝑐 

was  remarked over 0.15 < 𝛬𝑟 ≤ 1. In addition and 

unexpectedly, over the sub-range range 0.2 < 𝛬𝑟 <
0.4 ,  an increase of the aspect ratio renders the 

surface more sensitive (decrease of 𝑅𝑒𝑐), while the  
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(a): S =0             (b): S =0.004 

 

          

(c): S =0.070                   (d): S =0.215 

 

         
(e): S =0.230              (f): S =0.325 

Fig. 11. Effects of co-rotation. Streamlines pattern when 𝐑𝐞 = 𝟒𝟑𝟎, 𝚲𝐡 = 𝟏; the rotation ratio 𝐒 is 

indicated. (N.B: the left vertical boundary is the cavity axis). 

 

opposite effect happens outside this range. 

Moreover, substantial changes in the flow pattern 

were evidenced under a differential rotation of the 

sidewall which induces a meridian circulation of 

weak intensity but sufficient to suppress (enhance) 

the flow stagnation under counter-rotation (co-

rotation). However, high counter-rotation rates 

induce sidewall flow separation with the formation 

of a meridian cell which extends to control the bulk 

flow and confines the bottom disk effects to a narrow 

region.       
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