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ABSTRACT 

We investigate the effect of an axial Poiseuille annular flow on the stability of Taylor vortices via numerical 
simulation using CFD Ansys Fluent software. The working conditions are identical to those of the Taylor-
Couette experimental device of the LaSIE laboratory, where the inner cylinder is rotated. An incompressible 
fluid of density ρ= 998 kg/m3, with a kinematic viscosity 𝜈 = 1.004 ∗ 10ିm2/s at a temperature T= 19.5 °C is 
considered. The geometrical parameters of the flow system are characterized by a height H=275 mm, a radius 
ratio η=0.804, and an axial aspect factor Γ=45.45. The axial Reynolds number and Taylor number are 
respectively in the ranges of 0 ≤ Rೌೣ ≤ 12 , and 0 ≤ 𝑇𝑎 ≤ 142.25. Flow control is carried out according to 
two distinct protocols to bring out the effect of axial flow on the evolution of the Taylor vortex Flow (TVF). 
The first consists of superimposing an azimuthal flow around the critical TVF threshold with increasing axial 
flow until the Taylor vortices disappear. In the second, an axial field is set and the Taylor number is varied until 
onset of the TVF mode. It is predicted that in the presence of an axial flow, the critical threshold for first 
instability triggering (TVF) is delayed. In addition, the ratio of the axial phase velocity to the mean axial 
velocity of the axial base flow is 1.16. This value agrees well with previous results reported in literature. 
 
Keywords: Taylor-Couette flow; Axial flow; Taylor vortex; Simulation. 

NOMENCLATURE 

C             skin friction coefficient 
d     annular gap  
H     height of cylinder 
k      axial wave number 
R1       radius of Inner Cylinder (IC) 
R2       radius of Outer Cylinder (OC) 
𝑟, 𝜃, 𝑧     cylindrical coordinates 
Reax       axial Reynolds number  
Ta     Taylor number  
Tୟ

∗     Taylor number  
Tୟୡభ

∗ , Tୟୡଵ
 critical Taylor number of the first 

instability 
 

Tୟୡଶ
 critical Taylor number of the second 

instability x dimensional radial distance  
𝑉௭ axial velocity 
𝜂 radius ratio  
𝜆 axial wavelength 
𝜈 kinematic viscosity 
𝜌 density 
Γ aspect ratio 
𝛺ଵ angular velocity of inner cylinder 
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1. INTRODUCTION 

The Taylor-Couette flow system represented by the 
motion of a viscous fluid between two coaxial 
cylinders, where only the inner cylinder rotates, is 
has been thoroughly studied in the past due to its the 
great impact on both fundamental and applied areas.  

Theoretically, this simple system's configuration is 
chosen in order to better understand transition to 
turbulence. Several unsteady modes are identified 
such as: Taylor Vortex Flow (TVF), Wavy Vortex 
Flow (WVF), Modulated Wavy Vortex Flow 
(MWVF) and Taylor Turbulent Vortex Flow 
(TTVF). Practically, the Taylor-Couette system is 
encountered in various applied fields as in 
viscometry, filtration processes and industry.  
Since the pioneering work of G. I. Taylor, huge 
amount of experimental and theoretical researches 
are devoted to the Taylor-Couette system. For a 
thorough scientific contributions in this area the 
readers are referred to Chandrasekhar (1961), and 
Drazin and Reid (1981). Other important 
experimental works contributed to elucidate the 
evolution of instability structures in the Taylor-
Couette system under the influencing factors in 
relation with geometry and rotating speed. 
Burkhalter et al. (1973) confirmed the theoretical 
work on the critical thresholds of different instability 
modes using a visualization technique. 
Fenstermacher et al. (1979) measured the 
spatiotemporal periodicities and velocity fields of the 
Taylor-Couette flow system using laser velocimetry 
(LDA). Bouabdallah (1980) highlighted the 
transition process to turbulence for different gaps 
using polarographic method and spectral analysis.  

Andereck et al. (1986) presented a diagram where 
the observed regimes are reported versus Reynolds 
numbers of the inner and outer cylinders. S.T. 
Wereley et al. (1998) studied evolution of the critical 
thresholds by measuring the radial and azimuthal 
velocity components, using the PIV (Particle Image 
Velocimetry) technique. 

The Taylor-Couette system in the presence of an 
axial hydrodynamic field (Taylor-Couette-
Poiseuille) is still attractive for many researchers due 
to applications met in various industrial processes 
such as: filtration processes, photocatalytic reactors, 
heat exchangers, rotating machines, plain bearings, 
etc.  

DiPrima and Pridor (1979), Ng and Turner (1982), 
and Recktenwald et al. (1993) analyzed the effect of 
axial flow at low axial Reynolds numbers on the 
stability of the Taylor-Couette system for various 
gaps, in linear theory for the axisymmetric case. 
They confirmed that the onset of the TVF mode is 
delayed in the presence of an axial field. In addition, 
they showed that Taylor vortices propagate axially 
where the ratio of the axial phase velocity to the 
mean base axial velocity at the column inlet is about 
1.17.  

The theoretical results of DiPrima and Pridor (1979), 
Ng and Turner (1982) and Recktenwald et al. (1993) 
were experimentally checked by Lueptow et al. 

(1992) using visualization, and Tsameret and  
Steinberg (1994) with Laser Velocimetry (LDA) for 
low values of the axial Reynolds number.  

Using PIV technique, Lueptow and Wereley (1999) 
measured radial and axial velocity fields in a Taylor-
Couette-Poiseuille system (TCP) for a radius ratio of 
η=0.83. A cartography of various regimes versus 
Taylor number and axial Reynolds number could be 
constructed. Hwang and Yang (2004) numerically 
verified the values measured Lueptow and Wereley 
(1999) for the same working conditions. Same 
regimes are identified, namely: Taylor vortex, wavy 
Taylor vortex, stationary spiral vortex, wavy spiral 
vortex and turbulent wavy vortex.  

Monfared and Shirani (2016) studied experimentally 
and numerically the TCP flow system according to 
two different protocols. Direct protocol, where 
rotational speed is constant and the inverse protocol, 
where only the axial field is held fixed. It is found 
that for both protocols, the instability structures are 
different for the same values of Taylor and Reynolds 
numbers. 

Recently, Kristiawan et al. (2019) measured 
experimentally the azimuthal and axial shear rates at 
the outer cylinder for various regimes of the TCP 
flow using the polarographic method. 

Kataoka et al. (1977) obtained empirically by an 
electrochemical method, a relationship between the 
axial motion of Taylor vortices and the periodic heat 
and mass rates at the outer cylinder. 

Ohmura et al. (2005) numerically and 
experimentally investigated classification of solid 
particles suspended in a TCP system. They showed 
that fine particles are trapped in vortices while the 
large ones are drained by the intra-vortex flow.  

The present numerical work is devoted to study 
effect of an axial hydrodynamic field on a Taylor-
Couette flow for moderate Reynolds numbers 
Rೌೣ ≤ 12 . To be more specific, it is aimed at 
highlighting the influence of the axial flow on the 
main flow stability regarding the first instability 
mode: TVF.  

To this goal, the study is elaborated into two steps. 
The first consists in imposing a fixed value of the 
Taylor number Ta and varying the axial Reynolds 
number Reax until total flow relaminarization, and 
the second is relevant to superimposing an axial 
Reynolds number while varying Taylor number until 
re-appearance of the first mode, TVF.  

2. NUMERICAL PROCEDURE 

2.1 Working Conditions 

The geometrical and physical conditions of the 
system are selected regarding working conditions of 
the Taylor-Couette experimental device of the LaSIE 
laboratory (University of La Rochelle) where criteria 
for appearance of TVF and WVF instability modes 
are experimentally established.  
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The constant physical properties at a temperature 
T=19.5 °C, concerns an incompressible fluid of 
density ρ= 998 kg/m3, with a kinematic viscosity 𝜈 =
1.004 ∗ 10ିm2/s. The working conditions are such 
that, the inner cylinder of radius 𝑅ଵ = 24.85 𝑚𝑚 
rotates with an angular velocity Ω1, and the outer 
cylinder of radius  𝑅ଶ = 30.9 𝑚𝑚 is held fixed. The 
height of the flow system is H= 275 mm, the radius 
ratio η= 0.804 and the aspect ratio is Γ=45.45.  

In the present work, the Taylor number is defined as 
Ta=

ஐభோభௗ

ఔ
 (Lueptow and Wereley 1999) although in 

the literature, we can find another expression for the 

definition of Taylor number as 𝑇
∗ =  

ஐோభௗ

ఔ
ට

ௗ

ோభ
. 

 
2.2 Geometrical Configuration 

Numerical simulations are implemented on ANSYS 
Fluent software, with a structured hexagonal mesh 
(Fig. (1)) in the radial, azimuthal, and axial directions 
(r, θ, z). Several mesh configurations are tested. 
Comparison of the obtained numerical values for 
critical characterizing values (transition to TVF and 
WVF) in terms of Taylor and Reynolds numbers 
with those in literature allowed to validate the 
adopted mesh with 772,800 cells (13*200*275). 

Pressure is discretized based on a second-order 
scheme. A third-order MUSCL scheme is used to 
discretization of the momentum equations. The 
hydrodynamic field Pressure-Velocity is coupled 
using PISO scheme. The convergence criterion is 
fixed to 10-5, and the time to Δ𝑡 = 0.0002 s. 
 

 

 

 

 

 

 

 

 
Fig. 1. Mesh configuration. 

 
2.3 Governing Equations 

The hydrodynamic field is represented by the 
velocity field 𝑉 ሬሬሬሬ⃗ (𝑉 = 𝑣 , 𝑉 ఏ = 𝑉 ఏ

തതതത + 𝑣 ఏ,  𝑉௭ = 𝑉௭
ഥ + 𝑣௭), 

and pressure = 𝑃ത + 𝑝 . Equations of motion in 
cylindrical coordinates (𝑟, 𝜃, 𝑧) are expressed as, 

Continuity equation       

∇.Vሬሬ⃗ =0               (1) 

Momentum equation 

 
பሬሬ⃗

ப୲
+ ൫Vሬሬ⃗ . ∇൯Vሬሬ⃗ = −

ଵ


∇p + νΔVሬሬ⃗                  (2) 

Where,  

²

²

²

²

²

11

²

²
²=

zrrrr 

















  

is the Laplacien operator in cylindrical coordinates. 

Boundary conditions associated to mean 
velocity field :   

Vഥ  = Vഥ = 0,  for r = R2, and Vሬሬ⃗   = RଵΩଵ, for r =Rଵ.          
                                  (3) 

Boundary conditions associated to 
perturbed velocity field :     

v  = v୰ =  v = 0,  for r = R1 and r = R2.                  (4) 

3. RESULTS AND DISCUSSIONS 

Evolution of the first TVF transition structure in 
presence and absence of an axial flow is considered. 
Specifically, results for the T-C system without an 
axial field (standard case) are first presented, then 
effect of the axial hydrodynamic field is considered.  
 
3.1 Flow without Axial Hydrodynamic Field 

(Reax=0) 
3.1.1 Appearance of TVF and WVF mode 

a)- First instability mode TVF  

For transition to TVF mode, the critical numerical 
value is found equal to Tୟୡభ

∗ = 45.8. This compares 
well to experiments of Recktenwald et al. (1993), Ali 
et al. (2002) where the presented value is Tୟୡଵ

=98.43 
corresponding to a deviation of 5.6%. 

Figure 2 shows the first instability structure TVF in 
the vicinity of the critical threshold. The axial 
wavenumber k = 23 corresponds to a wavelength λ = 
2d= 12.5mm. This value is consistent with those 
from the literature. The value of the critical Taylor 
number for the TVF mode obtained numerically 
agrees well with critical value of Taylor number 
reported in literature as shown by table1. 

 

Authors 
Critical Taylor 

number Tୟୡభ
 

Precision 

(%) 

Recktenwald et 

al. (1993)  
94.7331 1.9973 

Ali et al. (2002)  94.7336 1.9978 

Present work 92.8409  

 
Table 1. Critical Taylor number evaluated by 

authors for 𝛈 = 𝟎. 𝟖. 
 

b) - Second mode of instability WVF  

Figure 3 shows the structure of WVF instability in 
vicinity of the critical threshold. It is noted that the 
critical Taylor number Tୟୡమ

∗  = 73.88, coincides well 
with the experimental critical value Tୟୡమ

∗  = 72.40. 
This mode is characterized by the azimuthal 
undulation of the Taylor vortices.  

 

275 cells in the 
axial direction z 

200 cells in 
the azimuthal 
direction 𝜃 
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(a) Tୟୡభ

∗ = 45.8     (b)  Tୟୡభ

∗  = 48.76 
(Tୟୡଵ

 = 92.84)           ( Tୟୡଵ
= 98.43) 

Fig. 2. Representation of TVF mode in the 
vicinity of critical threshold: (a) Numerical 

study, (b) Experimental visualization. 

 

 

(a) Tୟୡమ

∗ = 73.88  (b)  Tୟୡమ

∗  = 72.40 

Fig. 3. Visualization of WVF mode in the vicinity 
of critical threshold: (a) Numerical study, (b) 

Experimental visualization. 

 
In the experiment conducted by Coles(1965), 
considering a radius ratio η = 0.874 and an aspect 
ratio Γ= 27.9, the critical Taylor number of the 
second transition Tୟୡଶ

 is estimated to be about 55% 
above Tc1. which is in line with our results.  

In our case, the critical threshold is evaluated at a 61% 
above Tୟୡభ

∗ . Appearance of the WVF wave observed 
experimentally corresponds to a rate of about 49% 
above Tୟୡభ

∗ . 

3.1.2 Transition from the stable laminar 
regime to the first instability structure 

Figure 4 shows details on the transition mechanism 
from laminar regime to the first TVF mode. An 
Ekman vortex signature is observed at the bottom 
and top borders for a low Taylor number value Tୟ

∗ = 
0.73. When increasing the control number until the 
value Tୟ

∗ = 7.38, a pattern of vertical isobaric lines is 
observed along the entire height. From Tୟ

∗ = 22.16, a 
vertical wave train azimuthally launches in the 
system. At Tୟ

∗ = 36.94, the formation of the Ekman 
vortex and the appearance of the first Taylor vortices 
at the top and bottom borders of the system. When 

increasing the Taylor number up to Tୟ
∗ = 44.33, 

propagation of Taylor vortices progresses 
symmetrically from system endcaps towards the 
center. Finally, piled vortices occupy the entire 
height of the column at Tୟౙ

∗ = 45.8,  characterizing 
the first mode of TVF instability.  
 

 

Tୟ
∗ = 0.73            Tୟ

∗ = 7.38            Tୟ
∗ = 22.16 

 

Tୟ
∗ = 36.94           Tୟ

∗ = 44.33              Tୟ
∗ = 45.07 

 
    Tୟౙ

∗ = 45.8 (TVF) 
Fig. 4. Development of the centrifugal vortices 

from laminar regime to TVF mode. 
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3.1.3 Velocity and vorticity field distribution 
for TVF mode  

a) - Velocity field 

Figure 5 depicts distribution of the radial, azimuthal 
and axial velocity fields. The radial velocity field 
(Fig. 5(a)) shows between the two counter-rotating 
cells, an alternation of positive maximum values 
(outflow) and negative (inflow). The maximum 
radial velocity is most important at the outflow as 
show in legend by maximum velocity contours Vr = 
7.89 E-5m/s.  The outflow and inflow regions are 
shown in Fig. 5(d). Figure 5(b) exhibits repartition of 
the tangential velocity, where the maximum velocity 
is located near the inner wall and the minimum 
velocity is located next to the outer wall. The noticed 
undulations are due to the effects of inflow and 
outflow zones. Figure 5(c) indicates a shifted 
alternation, with respect to the central axis of the gap, 
of the maximum and minimum values of the axial 
velocity field. For a radial line passing through the 
center of the vortex, the axial velocity reaches a 
maximum value at a distance r1 = 0.25d and a 
minimum velocity at r2 = 0.75d by passing through a 
zero velocity at r3 = 0.5d (Fig. 14a). 

 

 

 

Fig. 5. Radial, azimuthal and axial velocity field 
components of the TVF mode. 

 
b) - Vorticity field  

Distribution of the vorticity field in the azimuthal 
plane is shown in Fig. 6. It can be noticed on Fig. 

6(a), that the maximum positive and negative radial 
vorticity field values are superposed near the center 
of the gap. In the vicinity of the inner and outer walls, 
the radial vorticity is less important. Figure 6(b) 
shows the superposition of the maximum positive 
and negative values of the tangential vorticity at the 
central region of the gap and in a thin region near the 
inner wall side. 
 

 

 
Fig. 6. Distribution of the radial, azimuthal and 

axial components of the vorticity field for the 
TVF mode. 

 
We notice on Fig. 6(c), the superposition of the mean 
and minimum negative values on both sides of the 
central axis of the gap. 

3.2 Taylor-Couette Flow with Axial Flow  
( 𝐑𝐞𝐚𝐱 ≠ 𝟎) 

To highlight the effect of the axial hydrodynamic 
field on the stability of the Taylor-Couette flow, this 
part of the study is carried out into two steps to 
concerning the first protocol In the first, a critical 
threshold Taylor number ( Tୟ

∗ = 45.8 ) is set, and the 
axial Reynolds number is varied until the regime 
becomes completely stable. The second step consists 
in imposing a value for the axial Reynolds number, 
while progressively increasing the Taylor number 
value until the first instability mode onset. Two fixed 
values of the axial Reynolds number were chosen, 
namely, Reax = 6 and Reax = 12 in order to compare 
the values obtained by those chosen by Kristiawan et 
al. (2019).  
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3.2.1 Effect of the axial flow field on the Taylor-
Couette flow 

The first protocol is applied in order to better follow 
evolution of the flow until vortices disappearance. 
Abdelali et al. (2019) used a technique to make the 
Taylor vortices disappear by combining the effect of 
the radial deformation of the inner cylinder with the 
oscillation of the free surface. The vortices disappear 
from the free surface in the depth direction. Abdelali 
et al. (2019) by numerical and experimental study, 
concluded that the Taylor vortices can easily be 
destroyed using low deforming frequencies, but The 
Ekman cells requires a high frequency to be 
destroyed.    

The axial flow technique seems to lead to similar 
results but in the opposite direction. The strength of 
this technique lies in the fact that it destructs the 
vortices without resorting to the free surface and thus 
the system can be completely filled. This is not 
possible with radial deformation. 

a) - Distribution of Taylor vortex versus the axial 
Reynolds number 

Figure 7 shows the influence of the axial field on the 
stability of the flow and in particular the partial and 
total relaminarization versus the control number 
Reax. We notice that for the value Reax = 0.6, the 
Taylor vortices occupy the whole column and no 
alteration is detected in the flow configuration.  By 
fixing the value Reax = 3, we observe a partial 
disappearance of the piling in the region 0 < z ≤ 45 
mm. From Reax = 6, the piling vortices becomes 
limited to a region above the upper half of the column 
(180 < z ≤ 275 mm). The flow becomes completely 
stable for a value of Reax = 12, Taylor vortices 
completely disappear and excepted Ekman structures 
which subsist at the system endcaps. The flow is 
quasily relaminarized elswhere. 
 
b) - Stream lines and azimuthal vorticity 
distribution 

Figure 8 represents the azimuthal vorticity 
distribution for different values of the axial Reynolds 
number. It is seen in Fig. 8(a) that an axial ascendant 
flow evolves between the contra-rotating Taylor 
vortices from bottom to top of the system.  The 
upward flow at the base of the flow system tends to 
increase the size of the first two contra-rotating cells, 
and reach relatively to the weak value Reax = 0.6 an 
axial wavelength λ = 20 mm. It is observed in Fig. 
8(b), that for the value Reax = 3, the Taylor vortices 
disappear in the region 0 < z ≤ 45mm as revealed in 
Fig. 7. The vortices are separated in such a way that, 
the positive vortices are oriented towards the inner 
wall, while the negative vortices are deflected 
towards the outer wall. The axial wave number over 
the entire column reduces to k = 19. We note in Fig. 
8(c) that for Reax = 6, the relaminarization (straight 
streamlines) of the flow exceeds half the axial height 
(z = 180 mm) and the wave number reduces to k = 8. 
In the region 180 mm < z ≤ 275 mm, the streamlines 
are undulated. As shown in Fig. 8(d), flow is 
completely relaminarized for Reax = 12. The contra-
rotating cells vanish completely, which is consistent 

with the experimental results performed by Lueptow 
et al. (1992).  
 

 
Reax = 0.6, Ta = 92.84 Reax = 3, Ta = 92.84 

 
 

Reax = 6, Ta = 92.84            Reax = 12, Ta = 92.84 

Fig. 7. Evolution of TVF mode for different 
values of the axial Reynolds number. 

 
 
Figure 9 shows the axial distribution of the friction 
coefficient at the outer cylinder versus the axial 
Reynolds number Reax. It appears that in the 
presence of the axial field the intensity of the Ekman 
peak attenuates at the bottom border.  

As shown in Fig. 9(a), the friction coefficient varies 
periodically between the minimum value Cf min = 
0.0027 and the maximum value of the skin 
coefficient Cf max = 0.0063.It is observed in Fig. 9(b) 
that for an axial Reynolds number of Reax = 3, the 
optimal peak intensities are reduced respectively to 
Cf min= 0.0028 and Cf max = 0.0058.Accessing the 
value Reax = 6, we notice in Fig. 9(c) that the peaks 
decay around the values Cf min = 0.0037 and Cf max = 
0.0047 in the axial region along  0.18 < 𝑧 ≤
0.275 𝑚.  

c) - Distribution of friction coefficient in 
function of the axial Reynolds number 

In the bottom axial region: 𝑧 ≤ 0.18 𝑚 , a fixed 
value of the friction coefficient Cf  = 0.0042 is 
recorded. As shown in Fig. 9(d), relatively to the 
value Reax = 12, the friction coefficient becomes 
constant along the outer cylinder Cf = 0.005.  
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Reax = 0.6, Ta = 92.84         Reax = 3, Ta = 92.84 

 

Reax = 6, Ta = 92.84         Reax = 12, Ta = 92.84 
 

Fig. 8. Streamlines and azimuthal vorticity 
distribution versus axial Reynolds number. 

 
 

 

Reax = 0.6, Ta = 92.84 

 

Reax = 3, Ta = 92.84 

 

Reax = 6, Ta = 92.84 

 

Reax = 12, Ta = 92.84 
 

Fig. 9. Evolution of friction coefficient versus the 
axial Reynolds Reax for Ta=92.84. 

 
 

3.2.2 Effect of rotation on TVF mode 
reappearance 

At this stage of the study, evolution of the flow until 
reappearance of the Taylor vortices in the whole 
height of the column is targeted. 
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a) - Axial distribution of Taylor vortices  
 
 Axial Reynolds number Reax = 6 

Figure 10 illustrates distribution of vortices versus 
the Taylor number with an imposed axial Reynolds 
number Reax = 6. As shown in Fig. 10 (a), it seems 
that when rotation speed reaches a value 
corresponding to a Taylor number Ta=104.82, the 
vortex reappears in the upper zone of the column. As 
the Taylor number increases, there is a progressive 
propagation of the piling vortices (Fig. 10 (b) and 
Fig. 10 (c)) until the complete occupation of the 
whole system lenght by the piled vortices for a value 
of the Taylor number Ta=124.28 (Fig. 10 (d)). 

 

 

(a)                                   (b) 

Ta = 104.82            Ta =110.81 
 

 

(c)                                   (d) 

Ta = 118.29         Ta=124.28 (TVF) 

Fig. 10. Development of Taylor vortex versus the 
Taylor number for an axial Reynolds number 

Reax = 6. 
 

 Axial Reynolds number Reax = 12 

Figure 11 represents development of vortices versus 
Taylor number, for a fixed axial Reynolds number 
Reax= 12. By increasing the control number up to Ta 
= 127.28, the vortex piling in the column remains 
partial. We note that when Ta = 142.25 is attained, 
vortices piling region is confined in the 
interval 0.08 ≤ 𝑧 < 0.1𝑚.  Beyond z=0.1m, the 
flow shifts to the WVF mode. These numerical 

results are consistent with those of Kristiawan et al. 
(2019) under the same conditions. 

This reveals that the axial field tends to delay the 
onset of the TVF mode. The results obtained are 
comparable to those obtained by other authors, as 
reported in Table 2. 
 

Authors 𝜂 

Critical 
Taylor 
number 

𝑇భ

∗  

Critical 
Taylor 

number 𝑇భ
 

Lueptow and 
Wereley 
(1999) 

0.83 60.7 123 

present work 
0.80

4 
61.32 124.28 

Table 2. Comparison of the critical Taylor 
numbers for an axial Reynolds number Reax = 6. 

 

 

(a)                                      (b) 

Ta = 119.79               Ta =121.29 

 

(c)                                      (d) 

Ta = 127.28           Ta =142.25 

Fig. 11. Evolution of Taylor vortex for Reax = 12.  
 

b) - Distribution of vortices and azimuthal 
vorticity with and without an axial flow 

Figures 12 (a) and 12 (b) show distribution of Taylor 
vortices and streamlines at the bottom of the column 
in the absence and presence of axial flow at Reynolds 
number Reax = 6. Comparing the two figures, it is 
found that under effect of intra-vortex flow, the 
vortices are oriented on the sidewalls  and their sizes 
are reduced. The recorded wavelength λ = 9mm is 
smaller compared to the standard case λ = 12.5 mm. 
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In addition, we note that there are no vortices at the 
column inlet in the region z ≤ 0.02m. 

In the absence of the axial field, the optimal values 
of the azimuthal vorticity are located in the center 
and the vicinity of the walls. Under influence of the 
axial field, maximum negative values are located on 
the side of the inner wall and maximum positive 
values are located in the center of the gap and on the 
side of the outer wall. 

 

 
                             (a) 

                Reax = 0, Ta = 92.84 

 

              (b) 

                Reax = 6, Ta = 124.28 

Fig. 12. Details vortices distribution in the 
vicinity of the bottom region of the column. 

 
c) - Effect of axial flow on axial velocity 
distribution 

Figure 13 illustrates evolution of the axial velocity 
field along the azimuthal plane in the vicinity of the 
central part of the column, with and without axial 

flow. Figure 13(a) shows a shifted alternation of the 
maximum and minimum values of the axial velocity 
field relative to the central axis of the gap. We note 
in Fig. 13(b) that under influence of the axial field 
there is a predominance of positive values, 
consequently the distribution of the axial velocity 
field is asymmetric in the central axis of the gap. 

 

 
                               (a) 

                Reax = 0, Ta = 92.84 

 

 

                                  (b) 

                Reax = 6, Ta = 124.28 
 

Fig. 13. Distribution of axial velocity in 
presence and absence of an axial flow. 

 
The profiles of the axial velocity field versus of the 
radial distance with and without an axial flow are 
shown in Fig. 14. The mean axial velocity is seen to 
be zero (stationary TVF mode), the axial velocity 
field profile shown in Fig. 14(a) is symmetric about 
the center of the gap. The mean axial velocity 
calculated at an axial distance z = 130 mm, is 𝑣୫ =
1.16   (propagative TVF mode in Fig. 14(b)). The 
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ratio of derivation velocity to the mean base velocity 

is 



= 1.16. This result conforms well to the values 

obtained by Recktenwald et al. (1993), Ng and 
Turner (1982), and DiPrima and Pridor (1979). 

 

 
(a) 

 

 
(b) 

Fig. 14. Axial velocity profiles for TVF mode 
with and without an axial flow. 

5. CONCLUSION 

This work is devoted to the study of the stability of 
the Taylor-Couette flow system under the effect of 
an axial flow at non-vanishing Reynolds numbers. 
The study allowed us to obtain precise information 
on the evolution of the TVF mode in the absence and 
presence of an axial hydrodynamic field. First, for 
the standard case, (i.e., without axial field), we have 
tried to present details on the transition from laminar 
regime to TVF mode. We note that in the standard 
case for the same conditions, the values of the critical 
thresholds TVF and WVF correspond to those of 
other references. In the presence of an axial field, we 
have chosen two protocols to elucidate the influence 
of the axial field: 

(a) The first protocol related to the relaminarization 
of the flow consists in varying the axial Reynolds 
number Reax around the value of the critical 
Taylor number Tୟୡ. 

b) The second protocol concerns the opposite case, 
where the axial Reynolds number Reax is 

imposed and the Taylor number Ta is gradually 
increased until the TVF wave reappears. 

Analysis of the results within the framework of the 
first protocol allowed access to information about the 
distribution of the streamlines as well as the 
azimuthal vorticity for different values of the 
Reynolds number.  We note that for values of 
Reynolds number up to Reax = 6, relaminarization of 
the flow remains partial. The regime becomes totally 
laminar when the value of Reynolds number Reax= 
12 is attained. It appears that relaminarization of the 
flow depends essentially on the intensity of the axial 
flow, as it has been specified by references. It seems, 
that the intensity of the axial field influences the 
distribution of the friction coefficient at the external 
wall, where thefluctuating value is damped and 
stabilizes aroundCf = 0.005 corresponding to the 
value of Reynolds number Reax=12. 

From the second protocol, we have highlighted the 
effect of the axial field on the onset of the first TVF 
mode. We note that for the value of the axial 
Reynolds number Reax = 12, the distribution of the 
vortex piling at the column level remains partial. In 
addition, we notice that for a large value of the 
Taylor number Ta= 142.25 the vortices are undulated 
(the WVF mode). It has been noticed, that for an 
axial Reynolds number Reax= 6 and a Taylor number 
Ta= 124.28 the vortices settle completely on the 
whole column and that the intra-vortex flow tends to 
reduce the size of the vortices. Therefore the 
wavelength λ=9 mm is smaller than the standard case 
λ=12.5mm. 

The vortex rollers translate with a deviation velocity 
Vz = 1.16 mm/s. The ratio of the axial phase velocity 
to the mean base axial field velocity is well verified 
compared to the values obtained by Recktenwald et 
al. (1993), Ng and Turner (1982), and DiPrima and 
Pridor (1979). 
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