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ABSTRACT 

In the simplest and original case of study of the Taylor–Couette TC problems, the fluid is contained between a 
fixed outer cylinder and a concentric inner cylinder which rotates at constant angular velocity. Much of the works 
done has been concerned on steady rotating cylinder(s) i.e. rotating cylinders with constant velocity and the 
various transitions that take place as the cylinder(s) velocity (ies) is (are) steadily increased. On this work, we 
concentrated our attention in the case in which the inner cylinder velocity is not constant, but oscillates 
harmonically (in time) clockwise and counter-clockwise while the outer cylinder is maintained fixed. Our aim is 
to attempt to answer the question if the modulation makes the flow more or less stable with respect to the vortices 
apparition than in the steady case and if there are any reversing or non reversing flows apparition. If the 
modulation amplitude is large enough to destabilize the circular Couette flow, two classes of axisymmetric Taylor 
vortex flow are possible: reversing Taylor Vortex Flow (RTVF) and Non-Reversing Taylor Vortex Flow 
(NRTVF). Our work presents an experimental investigation of the effect of oscillatory Couette-Taylor flow on the 
instantaneous and local mass transfer and wall shear rates evolutions, i.e. the impact of vortices at wall; and the 
detection of any RTVF and/or NRTVF apparition. The vortices may manifest themselves by the presence of time-
oscillations of mass transfer and wall shear rates; this generally corresponds to an instability apparition even for 
steady rotating cylinder. On laminar CT flow, the time-evolution of wall shear rate is linear. It can be presented as 
a linear function of the angular velocity. For a mean Taylor number corresponding to a laminar Couette flow, a 
modulation frequency F = 0.1 Hz and an amplitude respectively β = 0.53 andβ = 1.08 are sufficient to destabilize 
the laminar CT flow, Taylor vortices appear. Comparing to a steady rotational velocity case, oscillatory flow 
accelerates the instability apparition, i.e. the mean critical Taylor number corresponds to the transition is smaller 
than that of the steady rotational case. The vortices direction can be deduced from the sign of the instantaneous 
wall shear rate time evolution.  
 
Key Words: Couette-Taylor(CT); Electrochemical technique; Experiments; Transition; Instability; Taylor 
number. 

NOMENCLATURE 

a inner cylinder radius   angular velocity of the rotating plate  
A surface of the probe   kinetic viscosity  
C concentration  δ δ = R2-R1 
D coefficient of diffusion  η radial ratio 
F frequency of oscillation  Г aspect ratio 

 
 
Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 1, pp. 147-154, 2016. 
Selected papers from the 7thInternational Exergy, Energy  
and Environment Symposium, IEEE7-2015 
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.36884/jafm.9.SI1.26163 
 
 

E. Berrich Betouche1, F. Aloui2 and J. Legrand3 



E. B. Betouche et al. /JAFM, Vol. 9, Special Issue 1, pp. 147-154, 2016.  

 

148 

H height of the CTS Superscripts 
I current  * dimensionless 
l probe length  _ temporal average 
Pe Péclet number Subscripts 
R radius  a inertia effect 
Re Reynolds number ax axial 
S wall shear stress  c critical 
Sh sherwood number cent centrifugal force 
t time  i inner 
Ta Taylor number q.l. quasi-linear 
u velocity  Lev lévêque approach 
x ,z coordinates  Sob Sobolik et al. approach 
Greek symbols Osc oscillatory 
 amplitude of the oscillation Max Maximum 
    
    

1. INTRODUCTION 

Couette-Taylor (CT) flows are frequently re-
encountered on engineering processes (such on rotor-
stator systems) and medical applications. It is widely 
used for the depleted uranium enrichment, as a 
membrane or filter...Most of the studies were 
interested to the Couette-Taylor simple case where 
the fluid is contained between a fixed outer cylinder 
and a concentric inner cylinder which rotates at 
constant angular velocity. We called this case "the 
steady rotating cylinder(s)"case such as the recent 
work of Abcha et al. (2013)who studied spiral vortex 
flow in counter-rotating Couette-Taylor system (SCT) 
with a large aspect ratio and an intermediate gap 
using the laser technique "Particle Image 
Velocimetry" (PIV) which is a global technique for 
velocity field determination. However, few studies 
focus on flow dynamic perturbation effects such as 
axial and/or radial flow imposed to rotating flow 
(Tilton et al., 2010; Martinand et al., 2009) or heat 
transfer combined to flow dynamics (Kedia et al., 
1999; Gilchrist et al., 2005). Less works were 
interested to mass transfer combined to rotating flow 
dynamics and wall interaction on Couette Taylor 
system such as Berrich et al., 2012 (a); 2012 (b), 
2013 (a); Kristiawan et al., (2011)... However, 
Kristiawan et al., (2011) work has concerned the 
determination of wall shear rate from mass transfer 
for steady rotating cylinder. While our works focused 
on steady rotating flow combined to axial flow 
(Berrich et al., 2012 (a) and (b)) and oscillating flows 
(Berrich et al., 2013 (a)) effects on mass transfer and 
wall shear rate. 

The occurrence of modulated flows in nature and in 
technological applications such as the stability of 
periodic blood flow in the aorta (Skalak et al., 1989), 
the alternation of heating and cooling of planetary 
atmospheres, encourages researchers to study 
parametric excitation effect on hydrodynamic 
(Feugaing et al., 2011). Donnelly et al., (1962) 
enumerated some theoretical (Hall, 1975; Hall, 1983; 
Riley and Laurence, 1976), experimental (Barenghi 
and Jones, 1989; Barenghi, 1991; Ganske et al., 1994) 
and numerical (Walsh and Donnelly, 1988) studies.  

These works illustrate that the oscillation motion 
destabilizes the flow but reveal a disagreement on the 
fact that a low frequency modulation produces a large 
or small destabilizing effect. However, few 
experimental studies have investigated the effect of 
modulation on mass transfer and wall shear rate. On 
this work, we concentrated our attention to the case in 
which the inner cylinder velocity is not constant, but 
oscillates harmonically (in time) clockwise and 
counter-clockwise while the outer cylinder is 
maintained fixed. Our aim is to attempt to answer the 
questions if the modulation makes the flow less stable 
with respect to the vortices apparition than in the 
steady rotating case and if there are any Reversing 
Taylor Vortex Flow (RTVF) or/and Non-Reversing 
Taylor Vortex Flow (NRTVF).  

If the modulation amplitude is large enough to 
destabilise the circular Couette flow, two classes of 
axisymmetric Taylor vortex flow are possible: 
Reversing Taylor Vortex Flow (RTVF) and Non-
Reversing Taylor Vortex Flow (NRTVF). For 
Reversing Flow, the inner cylinder is rotating anti-
clockwise for the first part of the cycle; the vortices 
respond by rotating in the same cylinder motion 
direction. For the second part of the cycle, the inner 
cylinder rotates in the opposite direction, the vortices 
respond by changing their rotation direction. For Non-
Reversing Flow, the inner cylinder and the vortices 
rotate in the same direction. However, when the inner 
cylinder reverses its rotation direction, the vortices 
don't follow the new cylinder direction i.e. they 
continue to rotate in the same direction as in the first 
half-cycle. Youd et al. (2003) studied numerically the 
two flow types. They demonstrated that for relatively 
high oscillation frequencies, the Taylor vortices 
direction does not change every half-cycle, i.e. 
presence of NRTVF. Youd et al. (2005) proved that, 
for Couette-Taylor system characterized by a radial 
ratio η = Rint/Rout = 0.75, there was a transition to an 
axisymmetric time-modulated flow, i.e. the Non-
Reversing Taylor Vortex Flow (NRTVF) in which 
Taylor vortices rotation direction is independent on the 
inner cylinder rotation direction. They illustrated that 
if the oscillation amplitude is large enough, the 
resulting time-dependent Taylor vortex can rotate in a 
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direction independent on the direction of the 
azimuthal motion which drives it. Taylor vortex pairs 
always rotate in the same direction, despite the inner 
cylinder drives the flow in the opposite direction. 
According to Youd et al., (2005) work, NRTVF takes 
place at sufficiently high modulation frequencies for 
which there is not enough time for toroïdal motion to 
vanish to small values. It can be caused by linear 
instability or finite-amplitude effects (Youd et al. 
2003). It may be affected by the weak Ekman 
circulation (absent in the calculation of Youd et al. 
(2003) which is induced by the fixed top and bottom 
ends of the Taylor–Couette System. Carmi and 
Tustaniwskyj (1981) numerically studied oscillatory 
Couette flow. They did not detect the existence of 
NRTVF. Their approach was based on studying the 
effects of infinitesimal perturbations over a cycle, i.e. 
the Floquet theory. More details about the theory are 
available on (Youd et al., 2003; Carmi and 
Tustaniwskyj, 1981; Barenghi and Jones, 1989). It is 
possible that NRTVF is due to finite-amplitude 
effects, whereas in RTVF, the radial velocity 
becomes negative for a part of the cycle. However, 
NRTVF could be due to a linear instability too 
according to Lopez and Marques (2002) Floquet 
analysis.  

Our work presents an experimental investigation of 
oscillatory Couette-Taylor flow behaviour, i.e. 
modulation effect on the apparition of RTVF and 
NRTVF by analyzing the instantaneous and local 
mass transfer and wall shear rate evolutions, i.e. the 
impact of vortices at wall. 

2. EXPERIMENTAL 
INSTALLATION  

The experimental installation (Fig. 1) is composed of 
an inner cylinder with a radius R1=97±0.2 mm and an 
outer cylinder with a radius R2=100±0.2 mm. The 
radius ratio is η=0.97. The aspect ratio is Г=150. The 
whole apparatus is made in Plexiglas. The inner 
cylinder was driven by a α-Step motor (marketed by 
the Omeroncompany). The electrical motor imposed 
to the inner cylinder a maximum speed of 120 rpm. It 
was supplied by a signal generator. The revolutions 
were controlled by a speed controller. The engine 
assures to impose sinusoidal motion to the inner 
cylinder. 

3. POLAROGRAPHY TECHNIQUE 

Polarography (electrochemical) technique, known as 
the electro-diffusion method, has been used. This 
requires the use of Electro-Diffusion (ED) probe 
which delivers the Limiting Diffusion current while it 
is polarized by a well polarization voltage. The local 
mass transfer rate is determined from the current. 
Then, wall shear rate is determined from mass 
transfer signals. In addition, a series of platinum 
probes have been mounted flush to the inner surface 

of the outer cylinder of the Couette-Taylor System 
(CTS). ED results are presented for the probe G 
situated at the mid-height of the CTS (Fig. 1).  

 
Fig. 1. Experimental installation. 

In our tests, a ferri-ferrocyanure of potassium is used 
as electrochemical solution with a concentration of 25 
mol/m3. An access of the sulfate of potassium K2SO4 
(130 mol/m3) is added as supporting electrolyte and 
40% of Glycerin to relay the instability apparition 
(viscosity effect). 

4. STEADY TAYLOR VORTEX 
FLOW CHARACTERIZATION 

To attempt to answer the question if the modulation 
makes the flow more or less stable with respect to the 
vortices apparition than in the steady rotational case, 
we begin by characterizing the flow for the case where 
the inner cylinder rotates at constant angular velocity 
i.e. steady rotational case. 

The Taylor number is generally used to characterize 
modes transition. It describes the competition between 
the viscous dissipation and the centrifugal force. It is 
defined as: 

int
i

cent int int

R
Ta Re

R R
    

 
  

              

(1) 

where the Reynolds number describes the competition 
between the viscous dissipation and the inertia effect:   

a

R
Re   

 
                    (2) 

The time-evolution of the Taylor number is presented 
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on Fig. 2. It shows that the Taylor number is constant 
and that the average Taylor number is equal to 8±0.4. 
For this Taylor number, we studied the time-evolution 
of mass transfer and wall shear rates. This allows 
flow instability detection because the vortices 
manifest themselves by the apparition of variations on 
mass transfer and wall shear rates evolutions.  

 
Fig. 2. Evolution of the Taylor number for steady 

rotational flow case. 

The dimensionless mass transfer rate is almost 
constant (Fig. 3). The average value is equal to 
1±0.02. The flow regime is thus laminar. It 
corresponds to Couette flow. The time-evolution of  

 
Fig. 3. Evolution of dimensionless mass-transfer 

rate for Tam=8. 

 

 
Fig. 4. Evolution of dimensionless wall shear stress 

for Tam=8. 

dimensionless wall shear rate for Ta=8 is presented on 
Fig. 4. The dimensionless wall shear rate remains 
constant. The average value is equal to 1±0.05. The 
flow is thus stable and no vortices appear. On laminar 
CT flow, the time-evolution of wall shear rate is 
linear. It may be presented as a linear function of the 
angular velocity. 

For the same average inner cylinder velocity, we 
studied the effect of oscillations on flow. 

5. MODULATION EFFECT ON RTVF 
AND/OR NRTVF 

5.1. Protocols and Taylor number evolutions 

As the RTVF and the NRTVF strongly depend on the 
inner cylinder rotation direction, we studied two 
principle protocols: 

 CASE A: The first one corresponds to non-stop 
advancing inner cylinder i.e. the inner cylinder 
always advances while oscillating.  

 CASE B: The second protocol corresponds to 
advancing – stopped inner cylinder. 

The time-evolutions of the Taylor number are shown 
respectively on Fig. 5 (case A) and Fig. 6 (case B).As 
we can see, for the different oscillatory cases, the 
Taylor number presents a sinusoidal evolution 
characterizing the oscillatory flow presence. The  
 

 
Fig. 5. Evolution of the Taylor number for F=100 

mHz and β=0.53 (case A). 

 
average Taylor number is equal to 8 which correspond 
to Taylor number for the steady case studied on the 
first section. On case A, the modulation amplitude β is 
strictly lesser than the unit and the Taylor number 
remains strictly positive.  The Taylor number varies 
between 12 and 4. On case B, β is equals to the unit. 
The Taylor number time-evolution presents a zero 
Taylor number when the inner cylinder is stopped and 
strictly positive values when it advances. The cylinder 
oscillates between Ta=0 and Ta=16.   

The average Taylor number, for all cases; is equals to 
8 which correspond to Taylor number for the steady 
laminar Couette flow case studied on the first section.  
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Fig. 6. Evolution of the Taylor number for Tam=8, 

F=100 mHz and β=1.08 (case B). 

As we have proved that for Taylor number equal to 8, 
the flow corresponds to laminar Couette Flow. The 
question now is to know if the oscillation disturbs the 
flow enough by accelerating the transition apparition 
and if there is any RTVF or NRTVF. We propose an 
answer by analyzing the mass transfer and the wall 
shear rates. 

5.2. Mass transfer rates analysis  

Mass transfer rates time-evolution i.e. the Sherwood 
number for the different oscillatory flow are 
presented respectively on Fig. 7 (case A), Fig. 8 (case 
B).  

 
Fig. 7. Evolution of dimensionless experimental 

mass transfer 
rate for Tam= 8, F=100 mHz and β=0.53. 

 
The Sherwood number is defined by: 

0

i l
Sh

n F C AD
                   (3) 

Where i is the Limiting Diffusion current delivered by 
the Electro-Diffusion (ED) probe, l the probe length, 
n the ions number, F the Faraday number, C0 the 
initial concentration, A the probe area and D the 
coefficient of Diffusion.  

The instantaneous and local mass transfer rates 
evolutions demonstrate the apparition and  

 
Fig. 8. Evolution of dimensionless experimental 
mass transferrate for Tam=8, F=100 mHz and 

β=1.08. 

development of Taylor vortices which manifest 
themselves by the presence of oscillations having 
constant amplitudes for β = 0.53 (case A) and β = 
1.08; despite that the mean Taylor number corresponds 
to a steady laminar case i.e. Couette flow. So, we can 
deduce that oscillations accelerate the transition 
apparition and thus the critical mean Taylor number 
corresponding to the transition from laminar Couette 
flow to Wavy Vortex flow is lesser than that of the 
steady case. For β = 0.53 and β = 1.08, the mass 
transfer rate is no longer linear, it has a sinusoidal 
evolution. It follows the cylinder motion. It remains 
always positive.  

5.3. Wall shear rates analysis  

Basing on mass transfer evolutions, we have found 
that, if the oscillation amplitude is 0.53 ≤ β ≤ 1.08, 
laminar Couette flow can be destabilized, Taylor 
vortices appear.  

The wall shear rate was determined using three 
approaches: the “Lévêque solution” (1928), Sobolik et 
al. (1987) method which is a correction of the Lévêque 
(1928) solution and the inverse method (2006). The 
different approaches are well developed on our 
previous work (Berrich et al., 2013 b). The inverse 
method was experimentally validated in our previous 
work (Berrich et al., 2013 c). It gives satisfactory 
results even for reversing flows. 

 
The experimental mass transfer signals were smoothed 
(filtered) before using it to determine the wall shear 
rate because the different approaches are very 
sensitive to noise.  

The temporal evolutions of wall shear rates, for 
relatively low modulation frequency F = 100 mHz, are 
presented respectively for modulation amplitude β = 
0.53 and β = 1.08 on Fig. 9 and Fig. 10.The vortices 
manifest themselves by the presence of time-
oscillations on wall shear rate evolution. For low 
modulation frequency (F = 0.1 Hz), and for  
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Fig. 9. Evolution of dimensionless wall shear rate 

for Tam=8, F=100 mHz and β=0.53. 

 

 
Fig. 10. Evolution of dimensionless wall shear rate 

for Tam=8, F=100 mHz and β=1.08. 

modulation amplitudes β = 0.53 (i.e. nonstop 
advancing CT inner cylinder) and β = 1.08 (i.e. 
advancing - stop advancing CT inner cylinder), wall 
shear rates still positive. We proved that if the 
oscillation amplitude is “small” enough, the resulting 
Taylor vortex rotates in a direction which do not 
depend on the direction of the azimuthal motion 
which drives it i.e. NRTVF. 

6. DETECTION AND 
CHARACTERIZATION OF 
OSCILLATORY FLOWS USING 
FREQUENCY SPECTRUM 

The periodic signals usually used, whether low or 
high frequency, are rarely purely sinusoidal. They are 
in fact a mixture of sinusoidal signals whose 
frequencies are multiples of the fundamental 
frequency which is the lowest frequency. The 
multiple frequencies of the fundamental frequency are 
called harmonic. In general, any periodic function of 
frequency f0 i.e. the fundamental frequency, can be 
decomposed into a sum of sinusoidal waves 
(harmonics) whose frequencies are integer multiples 
of f0 (2 f0 3 f0 ... Nf0). Its amplitudes and the 

respective 

 
Fig. 11. Frequency spectrum Tam = 8, F = 0.1 Hz,  

β = 0.53 (case A). 

 

 
Fig. 12. Frequency spectrum Tam = 8, F = 0.1 Hz,  

β = 1.08 (case B). 

phases are the resulting of Fourier series 
decomposition.  

Swinney and Zhang (2013) studied Taylor Vortex 
Flow dynamics in the case of rotating cylinders 
(steady rotational case). They defined the Reynolds 
number as R=(2π.fcyl.a).d/ν; where fcyl is the cylinder 
frequency, a is the inner cylinder radius, b is the outer 
cylinder radius, d=b-a, and ν is the kinematic 
viscosity. They found that the transition from laminar 
flow to Taylor vortex flow, is an example of a 
"pitchfork" bifurcation, that is, a transition from one 
time-independent state to another with different 
symmetry. Modulated wavy vortex flow is 
characterized by two disproportionate characteristic 
frequencies. Wavy vortex state is characterized by 
spectra with a single fundamental frequency f1 and its 
harmonics. In the wavy vortex state, an increase in R 
will lead to a transition where characterized by a 
frequency f2. Their visual observations revealed that 
the Taylor vortex is modulated. The frequency f2 
corresponds to an azimuthal traveling wave similar to 
the wavy vortices; the angular speed of the modulated 
waves is about 0.44fcyl. Proportionate and in 
proportionate frequencies in MWVF can never be 
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distinguished experimentally. A bifurcation from a 
time independent system to a periodic state is called a 
Hopf bifurcation.  

Coughlin and Marcus (1992) studied the Modulated 
waves in TC flow. They resumed that in the 
experiments of Zhang and Swinney (1985) who used 
a Taylor-Couette system with radius ratio 0.883, the 
flow state was determined by flow visualization, and 
spectra were taken from the time series of scattered 
light intensity. With this technique, there is no precise 
quantitative relationship between the amplitude of a 
spectral peak and the power of the corresponding 
mode (1985). Zhang and Swinney (1985) observed a 
quasi-periodic flow in which the spectral peak 
associated with the modulation, was frame 
independent and thus not associated with an 
azimuthally travelling mode. 

We imposed a sinusoidal motion characterized by a 
fixed frequency and amplitude while conserving a 
mean Taylor number equals to Ta = 8 in order to 
compare the characteristics of the flow obtained to the 
steady rotational one, characterized also by Ta = 8, in 
term of vortices appearance and the flow regime 
obtained. What are the characteristic frequencies of 
these vortices? 

The Figs 11 and 12 present a logarithmic presentation 
of the absolute values of Fourier Transform i.e. the 
frequency spectrum of mass transfer signals function 
of frequencies, for an imposed frequency oscillatory 
motion fcyl= F = 0.1 Hz. 

For steady rotational flow characterized by Ta=8, the 
flow is laminar i.e. Couette flow is characterized by 
vortices absence. Thus, the spectral peaks detected 
while imposing an oscillatory motion are the vortices  
 

imprints i.e. the frequencies correspond to those of 
vortices which appear due to the modulation. There 
are commensurate (proportionate) and 
incommensurate frequencies (Table .1). 

Table 1 Frequency spectrum 
β 0.53 1.08 

Fcyl 0.1 0.1 

H
ar

m
on

ic
s 

(H
z)

 

0.2 
0.3 

 

0.2 
0.3 
0.4 

1.5 
1.7 
2.2 

7. CONCLUSIONS 

This paper presents an experimental investigation on 
oscillatory Couette-Taylor flows. The vortices may 
manifest themselves by the presence of time-

oscillations on mass transfer. The instantaneous and 
local mass transfer rates evolutions demonstrate the 
apparition and development of Taylor vortices which 
manifest themselves by the presence of oscillations 
having constant amplitudes for β = 0.53 and β = 1.08. 
The vortices direction can be deduced from the sign of 
the instantaneous wall shear rate time evolution. The 
wall shear rate was determined using three 
approaches: the “Lévêque solution” (1923), Sobolik et 
al. (1987) and the inverse method (2006). The results 
illustrate that the modulation can destabilize laminar 
Couette flow even for low oscillation frequencies and 
relatively low oscillation amplitudes. Oscillatory flows 
accelerate the flow transition. The Taylor number of 
the steady case to obtain the same mean shear rate is 
greater than the mean Taylor number relative to the 
oscillatory case. The frequencies spectra allows to 
characterize the increasingly complex dynamics that 
emerges with the increasing of β.  
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