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ABSTRACT 

To improve the prediction accuracy of the surrogate model and reduce the calculation cost for hydraulic 
optimization design of centrifugal pump impeller, an inverse design and optimization method based on adaptive 
proper orthogonal decomposition (APOD) hybrid model was proposed. Initial samples were designed by 
perturbing blade control parameters of the original model. The samples were classified using the K-means 
clustering algorithm, and the adaptive samples were selected according to the category of the objective sample. 
The snapshot set is composed of blade shape parameters and the CFD flow field data in impeller, which is 
decomposed into a linear combination of orthogonal bases by the proper orthogonal decomposition (POD) 
method to predict the objective parameters. According to the objective load distribution, the low specific speed 
centrifugal pump was inversely designed by using the APOD model, and its initial blade was obtained. And 
then, the flow field corresponding to disturbed blade shape was predicted using the APOD method, so as to 
evaluate the gradient of the objective function to design variables. Finally, the initial blade was optimized by 
the gradient descent method. The results show that the APOD hybrid model method can be employed to 
accomplish the blade inverse design and the flow field prediction in the optimization design of centrifugal 
impeller, which significantly reduces the numerical calculation cost and improves the accuracy of the flow field 
prediction. 

Keywords: Proper orthogonal decomposition; Adaptive surrogate model; Inverse design; Optimization; 
Centrifugal pump. 

NOMENCLATURE 

a blade shape parameter 
b inner product of a complete vector and 

POD basis vector 
C design space 
F flow field parameter 
f blade load distribution 
G left singular matrix 
g output parameter of RBF model 
H rated head of pump 
J objective function 
K inner product of POD basis vector 
L number of grid points 
l number of blade shape parameters 
M torque of impeller 
m number of iterations 
N number of samples 
n normal vector of blade surface 
n rotational speed 
ns             specific speed of impeller 

q geometry boundary 
R position vector of points in blade surface 
S suction side of blade 
U snapshot sets 
U1 complete vector sets 
u incomplete vector 
V right singular matrix 
v design variable 
W model coefficient of RBF 
x input parameter of RBF model 
α POD basis coefficient 
β blade angle 
β1 inlet angle of blade 
β2 outlet angle of blade 
Φ POD basis vector 
ϕ blade wrap angle 
ψ Gaussian basis function 
Σ diagonal matrix containing all eigenvalues 
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P pressure side of blade 
p pressure distribution 
Qd   rated flow of pump 

τw tangential stress 
λ scale factor 
η rated efficiency of pump 
 

  

 

1. INTRODUCTION 

The optimization design of the centrifugal pump can 
also be considered as the problem of flow 
optimization. However, the complex relationship 
between geometric parameters and inner flow makes 
the research progress of pump optimization design 
slow (Derakhshan et al. 2013; Shim and Kim 2020; 
Zhang and Zhao 2020). The design of centrifugal 
pump blade mostly adopts the traditional one-
dimensional and two-dimensional design theory. The 
design process is inconvenient, and the hydraulic 
performance of the pump is highly dependent on the 
designer's experience, so it is difficult to ensure that 
the designed pump has high performance. To solve 
this problem, many relevant and meaningful works 
have been carried out (Zangeneh et al. 1996; Tan et 
al. 2010; Tong et al. 2020; Han et al. 2020). 
Currently, the optimization design methods of 
centrifugal pumps mainly include the response 
surface optimization method based on experimental 
design (Kim et al. 2012; Wang et al. 2017), the 
intelligent optimization method based on 
evolutionary algorithm (Huang et al. 2015; Li et al. 
2019), the gradient-based optimization method 
(Jameson 1988; Mohammadi 2010; Zhang et al. 
2014). In the response surface optimization method 
and intelligent optimization method, the calculation 
cost increases exponentially with the increasing 
dimension of design variables. The main difficulty 
for the gradient optimization method is that the 
gradient vector for the objective function with 
respect to the design variables is hard to evaluate. 
The calculation cost also gradually increases with the 
increase in the dimension of the design variables. To 
reduce the calculation cost, Jameson (1988) 
proposed the adjoint method to optimize the 
aerodynamic shape. In each optimization iteration, 
the flow field and adjoint field need to be calculated 
only once. The calculation cost is significantly 
reduced, but the derivation of complex adjoint 
equations and boundary conditions is difficult. The 
incomplete sensitivities method (Mohammadi 2010) 
ignores the influence of geometric shape disturbance 
on the flow field when calculating the gradient of the 
objective function to design variables. Although the 
calculation cost is significantly reduced, the 
prediction accuracy of the objective function is 
reduced. Compared to the above-mentioned 
methods, the surrogate model can quickly determine 
the function responses corresponding to the given 
inputs with adequate accuracy. In this research, the 
surrogate model was applied respectively in the 
inverse design and optimization of centrifugal 
impeller. 

The proper orthogonal decomposition (POD) 
(Chatterjee 2000), also known as Karhunen-Loeve 

(K-L) expansion or principal components analysis, is 
to determine a set of the optimal bases for the system 
through eigen decomposition and represent the 
complex data system as the inner product of a series 
of base vectors and corresponding basis coefficients. 
At present, the POD-based feature analysis method 
has been successfully applied to image processing 
(Sirovich and Kirby 1987), reduced-order model 
(Siddiqui et al. 2020), turbulence structure analysis 
(Holmes et al. 1996), and data mining (Duan et al. 
2019; Zhang et al. 2021). POD is also widely used to 
fill the missing data, namely the Gappy POD 
method. Gappy POD is a surrogate model for filling 
missing data, which is usually used in inverse 
problem design, flow field reconstruction, and 
aerodynamics airfoil optimization (Buithanh et al. 
2004; Luo et al. 2015; Qiu et al. 2018; Guo et al. 
2019). Luo et al. (2015). proposed an iterative 
inverse design method based on Gappy POD and 
used it for the inverse design of turbine blades. 
Buithanh et al. (2004) used the Gappy POD method 
to effectively combine the experimental data with 
computational data and complete the inverse design 
and flow reconstruction for airfoils. Qiu et al. (2018) 
combined the POD-based data dimension reduction 
method with the global optimization method to form 
a new optimization system, aiming at improving the 
efficiency of traditional global optimization. 

The fitting of the basis coefficient and the selection 
of samples have an important impact on the 
description accuracy of POD. In early applications, 
POD with linear regression, such as the least-squares 
method, was widely used to obtain the coefficients of 
POD basis modes. To improve the response accuracy 
of POD to a nonlinear system, Guénot et al. (2013) 
and Kato and Funazak (2014) proposed the POD-
based method on use of the radial basis function 
(RBF), which was then used for aerodynamic shape 
optimization. Luo et al. (2017) introduced the POD-
RBF hybrid model to reconstruct complex flow for 
the transonic blade, and then the aerodynamic 
optimization of the transonic compressor was carried 
out. These researches show that the expression 
ability of the POD-RBF hybrid model for the 
nonlinear system is significantly higher than that of 
POD with linear regression. For the selection of 
samples, the commonly used sampling methods are 
static sampling methods, which only focus on the 
distribution of samples in design variables space. 
The samples cannot dynamically adapt to the 
objective sample. In this paper, samples were 
classified according to their characteristics, and a 
dynamic adaptive sampling strategy was proposed, 
which was combined with the POD-RBF surrogate 
model to construct the adaptive proper orthogonal 
decomposition (APOD) hybrid model used in this 
study. 
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In this research, an APOD hybrid model was 
introduced to the inverse design and optimization of 
the centrifugal pump blade. The initial blade shape 
was obtained firstly by inverse design, and then the 
flow field corresponding to disturbed blade shape 
was reconstructed to predict the gradient of the 
objective function to design variables. The blade 
shape was optimized by the gradient descent method, 
and the optimal design of the centrifugal impeller 
was finally obtained. 

2. ADAPTIVE PROPER ORTHOGONAL 

DECOMPOSITION (APOD) HYBRID 

MODEL 

2.1 Principle of Gappy POD Method 

Compared with the original POD, snapshot POD 
(Sirovich 1986) reduces the order of autocorrelation 
matrix to the number of snapshots, which 
significantly improves the effectiveness and stability 
of eigen decomposition. Gappy POD, an extension 
of snapshot POD, determines the basis modes of the 
data system by singular value decomposition (SVD). 
The basic principle of reconstructing missing data by 
Gappy POD was briefly introduced in the following. 

Snapshot set U consists of the vector set U1 and u, 
and the vectors in U1 and u correspond to each other: 

T
1[  ]U U u , (1) 

where all elements are completely known in vector 
set U1, but some elements in the incomplete vector u 
are missing: 

1 2[  ]u u u , (2) 

,1 ,2Φ [Φ  Φ ]i i i , (3) 

where u1 and u2 are the vector components 
consisting of the given data and the missing data, 
respectively; Φi,1 and Φi,2 are the corresponding POD 
basis. The missing data in vector u2 need to be filled. 

The vector u1 is fitted by POD basis corresponding 
to the given data, i.e. 

11 ,1
1

Φ
N

i i
i

α


 u , (4) 

where u11 is the reproduced vector, which requires 
the smallest deviation from the originally given 
vector u1, N is the number of samples. The basis 
coefficient α can be obtained by solving the least-
squares problem: 

K b , (5) 

where K = (Φi,1, Φj,1) and b = (u1, Φi,1). Once the 
coefficients are obtained, the missing data can be 
reconstructed by 

22 ,2
1

Φi i
i

α


 
N

u . (6) 

The unknown vectors u2 can be replaced by u22, and 
the missing data are filled. 

Regarding the objective distribution of flow 
parameters as the known subvector, an inverse 
design can be achieved by filling up the missing 
subvector of blade shape. Similarly, flow 
reconstruction can be achieved by regarding the 
objective blade shape as the known subvector. 
 
2.2 POD-RBF Surrogate Model 

Since the least-squares method belongs to one of the 
linear response methods, its description accuracy is 
inadequate for complex nonlinear systems. In this 
study, to improve the description performance of 
Gappy POD on missing data reconstructions, 
nonlinear regression instead of the least-squares 
method is used in the subsequent blade inverse 
design and flow field prediction. Snapshot set U can 
be decomposed by SVD: 

T Σ ΦU G V G , (7) 

where G and V are orthogonal matrices, Σ is a 
diagonal matrix containing all eigenvalues. G is 
composed of coefficient vectors. The response 
surface can be established by regarding each POD 
basis coefficient vector as the outputs and the sample 
parameters as the inputs. In this study, RBF is used 
to construct the response surface model of POD basis 
coefficients: 

1

( , )
N

kj ij k i
i

g W ψ x x


  , (8)
 

where gkj is the j-th component of the k-th POD basis 
coefficient vector, Wij is the model coefficient, xi is 
an input parameter of the model, and ψ(xk, xi) is the 
Gaussian basis function. The POD basis vectors of 
the snapshot sets can be obtained by Eq. (7). POD 
basis coefficients of the objective sample are 
predicted by the RBF model, and the objective 
parameters are reconstructed, according to Eq. (7). 
 
2.3 APOD Hybrid Model Method 

In the POD surrogate model approach, the prediction 
accuracy is highly dependent on the selection of the 
samples. The commonly used static sampling 
method only considers the distribution of samples in 
design variables space, ignoring the influence of the 
sample characteristics on the surrogate model. The 
prediction accuracy of the constructed surrogate 
model will be significantly improved if the 
characteristics of samples are in high agreement with 
those of the objective sample. The K-means 
algorithm (Yang et al. 2020) is a classical iteration 
clustering analysis method that is widely used, and it 
classifies data according to some similarity 
measurement criterion, which can classify data with 
high similarity into the same category. In this study, 
the initial samples are classified by the K-means 
clustering algorithm, and an adaptive sample 
selection strategy with dynamic sampling is 
established. Combined with the POD-RBF, the 
APOD hybrid model of the centrifugal pump is 
constructed. The principle and implementation of 
APOD hybrid model have already been introduced in 
reference (Chen et al. 2021), and its basic process 
can be summarized as follows: 
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(1) Get the initial sample set by appropriately 
disturbing the blade control parameters of the 
original model. 

(2) Simulate the inner flow by the CFD method and 
get the blade pressure and load distribution of 
all samples. 

(3) Classify the initial samples by the K-means 
clustering algorithm. 

(4) Select the adaptive samples according to the 
category of the objective sample. 

(5) Construct the POD hybrid model using adaptive 
samples. 

(6) Predict the objective blade shape parameters in 
blade inverse problem or flow parameters in 
flow field reconstruction, respectively. 

3. APOD HYBRID MODEL INVERSE 

DESIGN AND OPTIMIZATION 

METHOD FOR CENTRIFUGAL PUMP 

BLADE 

The basic idea of inverse design is to change the 
blade shape to make the performance parameters of 
the designed blade as close to the given objective 
performance as possible. Buithanh et al. (2004) 
applied the POD method to airfoil inverse design and 
optimization. Zhang et al. (2017) applied Gappy 
POD to blade inverse design for the centrifugal pump 
inverse problem. In this research, the APOD hybrid 
model is used for the inverse design of the centrifugal 
pump blade. The design variable is defined as the 
blade load distribution, and the objective is to get the 
geometry shape that produces the corresponding 
objective load distribution. In hydraulic machinery, 
the change in the energy of fluid from the impeller 
inlet to the outlet determines the inner flow 
characteristics and hydraulic performances within 
the impeller. Therefore, the gradient of the total 
pressure distribution is directly defined as the blade 
load. The inverse design problem is to find the 
corresponding impeller geometry shape which 
would realize the objective blade load. 

The snapshot vector contains the blade shape 
parameters and the blade load distribution, it can be 
expressed as 

,1 ,2 , ,1 ,2 ,[ ]i i i l i i i La a a f f f  , (9) 

where a is the blade shape parameter, l is the number 
of blade shape parameters, f is the blade load 
distribution, and L is the number of grid points. For 
low specific speed centrifugal impeller, the 
circumferential angles of the blade shape at different 
radii were taken as the blade shape parameters. 

When the objective load distribution is given, the 
APOD hybrid model proposed in Sec. 2.3 is used to 
predict the corresponding blade shape parameters, 
thereby completing the blade inverse design and 
obtaining the initial blade of the centrifugal pump 
impeller. 

For a given load distribution, it cannot be guaranteed 
to be the optimal distribution. Therefore, in order to 
improve the hydraulic performance of the initial 
blade, its optimization design is carried out 

subsequently. The design variables include the blade 
outlet angle β2 and blade wrap angle φ. The design 
objective is to improve the pump efficiency under the 
design flow rate condition, and the blade shape is 
optimized while the meridional plane of the impeller 
remains unchanged. In the present study, the 
optimization problem can be described as 

min. ( ),   J   2C  = [ , ]，  v v v , (10) 

where C is the design space. The torque M acting on 
the impeller is the optimization objective, which can 
be expressed as 

,

hub,shroud

[( ) ( ) cot ]d

( ) cot d

w

P S

w

M p β s

β s

      

 





R n R

R




, (11) 

where P and S are the pressure side and suction side 
of the blade respectively; the subscripts “hub” and 
“shroud” represent hub and shroud of impeller; τw is 
the tangential stress; β is the blade angle; n is the 
normal vector of blade surface; R is the position 
vector of points in blade surface; p is the pressure 
distribution on the blade. 

The centrifugal impeller is optimized by the gradient 
descent method, and its objective function J can be 
expressed as the function of controls parameters, 
blade shape parameters and flow field parameters, 

( , ( ), ( ( )))i i iJ J v q v F q v , (12) 

where vi is the design variable of blade shape, q(vi) is 
geometry boundary, and F(q(vi)) is the flow field 
parameter. 

According to the derivation rule of composite 
function, the gradient of the objective function to 
design variables can be expressed as: 

d

d i i i i

J J J q J F q

v v q v F q v

     
  
     

. (13) 

In the optimization process, when the blade shape is 
renewed, i times of flow field calculation is required, 
where i is the dimension of the design variable. The 
calculation cost increases exponentially with the 
increase of the dimension of the design variables, 
which tends to cause the curse of dimensionality 
when the number of design variables is very large . 

To reduce the calculation cost of optimization in the 
centrifugal pump and improve the prediction 
accuracy of the flow field, the APOD hybrid model 
for flow field reconstruction is constructed by using 
the sample blade shape parameters and 
corresponding flow field data. The model is used to 
predict the flow field under the perturbations of the 
blade shape in the impeller optimization instead of 
CFD method. According to Eq. (13), the optimal 
impeller can be obtained by calculating the torque 
gradient and renewing the blade shape along the 
negative direction of the gradient vector, i.e. 

1 d

d
m m
i i

i

J
v v λ

v
   , (14) 
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Fig. 1. Optimization design process of centrifugal impeller based on APOD hybrid model. 

 
 
where λ is a scale factor, and m is the number of 
iterations. 

In this study, a complete hydraulic optimization 
design framework for the design and optimization of 
the centrifugal impeller is established based on the 
proposed APOD hybrid model, and the basic flow 
process is shown in Fig. 1. 

4. RESULTS AND DISCUSSION 

4.1 Numerical Calculation 

A low specific speed centrifugal pump was applied 
to verify the inverse design and optimization method 
of centrifugal impeller based on the APOD hybrid 
model. Under the design condition, the flow rate Qd 
of the pump is 12.5 m3/h, the head H is 30.7 m, the 
efficiency η is 53 %, rotational speed n is 2900 r/min, 
and specific speed ns ( 0.75

d3.65 /sn n Q H ) is 48. 

The number of impeller blades is 4. The meridional 
plane and axial view of the impeller are shown in Fig. 
2. The blade shape was parameterized by cubic 
Bezier curve, and the control parameters included 
inlet angle β1, outlet angle β2 and blade wrap angle 
φ. The value range of control parameters was 
determined according to the knowledge and 
experience of the centrifugal pump design, as shown 
in Table 1, in which the blade inlet angle β1 does not 
change. In the experimental design of initial samples, 
in order to ensure that the blade shape does not 
appear S-shape, the blade outlet angle was designed 
to vary with the blade wrap angle. The blade outlet 

angle can be composed of the mean value 
2
β and the 

pulsation value β´, where 
2
β and β´ were related to 

the wrap angle φ as shown in Fig. 3. According to the 
design knowledge of the centrifugal pump, with the 

increase of the wrap angle, the corresponding
2
β

decreases, and the variation of
2
β is relatively small 

near the two limit wrap angles that ensure the blade 
shape is smooth and does not appear S-shaped. 

Therefore, the relationship between
2
β and the wrap 

angle satisfies the curve shown in Fig. 3(a). The 
blade outlet angle under the same wrap angle can 
also vary within a certain range, that is, the pulsation 
value β´. According to the relevant knowledge of 
impeller blade, when the blade wrap angle is 110°, 
the inlet and outlet angles of the blade are equal, so 
β´ is 0°. When the blade wrap angle is far away from 
110°, β´ increases gradually. In this study, the 
maximum pulsation value is 5°, that is, the maximum 
value of β´ is 5°. Therefore, the relationship between 
blade outlet angle pulsation value β´ and wrap angle 
φ is shown in Fig. 3(b). Three different outlet angles, 

β2 = 
2
β , β2 = 

2
β + β´ and β2 = 

2
β - β´, can be taken 

for any wrap angle. According to the variation law of 
the above design parameters, the blade wrap angle 
was uniformly sampled from the value range of 80°-
160° in this study. Therefore, within the value range 
of blade control parameters, 9 different wrap angles 
were selected to produce 25 sample models as the 
initial sample set for subsequent inverse design and 
flow field prediction surrogate model construction. 

 

 
Fig. 2. Meridional plane and axial view of the prototype impeller. 
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Table 1 Range of blade shape control parameters 

Parameters 
Upper 
limits 

Lower 
limits 

Original 

β1 30° 30° 30° 
β2 50° 10° 17° 
φ 160° 80° 143° 
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β
2/
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β′
/°

φ/°  
(b) 

Fig. 3. Relationship between the blade outlet 
angle and blade wrap angle: (a) The relationship 
between β

2
 and φ; (b) The relationship between 

β´ and φ. 
 

 

Fig. 4. Computational domain of the centrifugal 
pump. 

 
Fig. 5. Structured grid of impeller and volute. 

 

The inner flow simulations of all samples in this 
study were solved with ANSYS Fluent CFD code. 
The flow was simulated by using RANS equations, 
and the SIMPLEC algorithm was used to couple 
pressure and velocity. The RNG k-ε turbulence 
model was adopted, and the near wall region was 
treated by standard wall functions. The velocity inlet 
and free outlet boundary conditions were specified, 
and all the solid walls were provided with a non-slip 
wall condition. The computational domain includes 
impeller, volute, inlet pipe, and outlet pipe, as shown 
in Fig. 4. The hexahedral structured meshes were 
employed to discretize the whole computational 
domain. The mesh of the impeller and volute is 
shown in Fig. 5. To balance simulation accuracy and 
the calculation cost, the grid independence test has 
already been introduced in previous work (Chen et 
al. 2021), and the total grid number was determined 
as about 1.3 million. The average y+ value near the 
wall in the whole numerical computational domain is 
90, which meets the requirements of RNG k-ε 
turbulence model for the wall grid (Wang 2016). 

The comparison of hydraulic performance between 
the experiment and the numerical simulation is 
shown in Fig. 6. The performance parameters of 
centrifugal pump are defined as: 

+Δout inp p
H z

ρg


 , (15) 

where H is the head of the pump, pin is the total 
pressure of the impeller inlet and pout is the total 
pressure of the volute outlet. 

h

ρgQH
η

Mω
 , (16) 

where ηh is the hydraulic efficiency of the pump, Q 
is the flow rate, M is the torque of the pump and ω is 
angular velocity. Since only hydraulic loss is 
considered in numerical calculation, the total 
efficiency of the pump needs to be revised according 
to the empirical formulas of mechanical efficiency 
and volumetric efficiency. Therefore, the efficiency 
of numerical simulation is the product of hydraulic 
efficiency, volumetric efficiency and mechanical 
efficiency,  

h v mη η η η , (17) 
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Fig. 6. Comparison of pump hydraulic 

performance between CFD and experiment. 
 
where ηv is the volumetric efficiency and ηm is the 
mechanical efficiency, which can be calculated 
according to the empirical formulas (Pei et al. 2014). 

As can be seen from Fig. 6, the trend of numerical 
calculations is consistent with the experimental 
results, and the values at different flow conditions are 
close. The maximum errors of the head and 
efficiency are 5.9% and 1.9%, respectively. 
Therefore, the numerical simulation is validated, and 
it can be applied in the following numerical 
calculation. 

4.2 The Blade Inverse Design of Low 
Specific Speed Centrifugal Pump 

According to the inverse design method of 
centrifugal impeller based on the APOD hybrid 
model proposed in Sec. 3, we can get the initial blade 
corresponding to the given objective load 
distribution. In this study, the load distribution of the 
original blade was taken as the objective load. The 
initial samples were classified using the K-means 
clustering algorithm based on the similarity of the 
blade load for the samples, and the classification 
results are shown in Fig. 7. The adaptive sample 

space was selected according to the objective load 
distribution, and then the APOD hybrid model of 
blade inverse design was constructed, and the initial 
blade was designed. 

The inverse design of low specific speed centrifugal 
pump was carried out by the traditional fixed sample 
proper orthogonal decomposition (FPOD) hybrid 
model method and the APOD hybrid model method, 
respectively, and results are shown in Fig. 8. The 
inverse design blade obtained by the FPOD method 
has a certain deviation from the original blade, while 
the inverse design blade obtained by the APOD 
hybrid model method almost coincides with the 
original blade. The load distribution of the blade 
obtained by the two inverse problem methods was 
simulated by CFD and compared with the load 
distribution of the original blade, as shown in Fig. 9. 
It can be seen that the load distribution of the blade 
obtained by the FPOD hybrid model has a larger 
deviation from the load of the original blade, while 
the load distribution of the blade obtained by the 
APOD method is consistent with that of the original 
blade.  

Figure 10 shows the comparison of the hydraulic 
performance between the blade designed by the 
APOD hybrid model and the original blade. As can 
be seen the performance of the inverse design blade 
agrees well with the original blade. Consequently, 
the prediction accuracy of the APOD hybrid model 
used in blade inverse design is significantly higher 
than that of FPOD, and the designed blade meets the 
given objective performance. 

4.3 The Blade Optimization of Low Specific 
Speed Centrifugal Pump 

To verify the prediction accuracy of the APOD 
hybrid model applied to the blade optimization for a 
low specific speed centrifugal pump, the flow field 

 

 
(a)                                                         (b)                                                         (c)

Fig. 7. Classification results of samples: (a) 1st category blade shapes; (b) 2nd category blade shapes; 
(c) 3rd category blade shapes. 
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Fig. 8. Blade shape of inverse design. 

 

 
Fig. 9. Load distribution of inverse design blade. 

 

 
Fig. 10. Performance comparison between the 
inverse design model and the original model. 

 
 
of the initial blade, that is, the inverse design blade 
obtained by APOD method in Sec. 4.2, was 
reconstructed. Contrary to the inverse problem, the 
flow field reconstruction is to predict the objective 
flow field (direct problem) by constructing a model 
under the given geometric parameters of the 
objective blade. According to the similarity of blade 
shape parameters for samples, the initial samples 
were classified again using the K-mean clustering 
algorithm, and the classification results were the 
same as those in the inverse design, as shown in Fig. 
7. The adaptive samples were selected based on the 
objective blade shape parameters, and the APOD 
hybrid model of flow field reconstruction was 
constructed. 

The pressure distribution of the initial blade was 
reconstructed by the FPOD and the APOD hybrid 
model, and compared with the pressure distribution 
calculated by CFD. The root mean square error 
(RMSE) of the POD prediction was calculated by 
using Eq. (18), and 

2

, ,

1 ,

1
RMSE 100%

L
i POD i CFD

i
i i CFD

F F

L F

 
   

 
 , (18) 

where Fi,POD, Fi,CFD were the flow field parameters 
predicted by POD and CFD, respectively and L is the 
number of grid points. 

Figure 11 shows the comparison between the 
pressure distributions on the initial blade 
reconstructed by the two POD hybrid models and the 
CFD simulation results. It can be seen from Fig. 11(a) 
that the two POD models can predict the basic 
structure of the flow field, and the pressure gradually 
increases from the impeller inlet to the outlet. The 
predictions of the two surrogate models are close in 
most areas on the blade, and both are in agreement 
with the CFD calculation. In Fig. 11(b), the 
prediction error of the FPOD method is up to 5%. 
Compared with the FPOD model, the prediction 
result of the APOD hybrid method are closer to the 
CFD, and its prediction error is less than 2%, which 
has higher prediction accuracy. The RMSE of the 
FPOD hybrid model and APOD hybrid model for 
predicting the pressure distribution of the initial 
blade is 2.5% and 1.2%, respectively. 
 

 
(a) 

 
(b) 

Fig. 11. Reconstruction of pressure on blade 
surface: (a) The pressure distributions of 

surrogate model prediction and CFD simulation; 
(b) Comparison of prediction error. 
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Fig. 12. Average total pressure distribution of 

shroud and hub on blade pressure side. 

 

Figure 12 presents the comparison of the total 
pressure distribution on the blade pressure side 
between CFD calculation and surrogate model 
prediction, where the ordinate is the average value of 
total pressure on the blade shroud and hub. The 
changing trends of total pressure predicted by two 
POD methods show the same as that calculated by 
CFD. Compared with the FPOD hybrid model, the 
total pressure predicted by the APOD method is 
closer to that calculated by CFD. The RMSE of the 
FPOD method is 4.3%, while that of the APOD 
hybrid model is only 1.1%. Approximately 2 hours 
are needed to complete the simulation of the flow 
field in pump by CFD method on a DELL T620 
workstation with 24 cores and 64 GB memory. 
However, it only needs 20 seconds by APOD method 
with the same workstation. It can be seen that the 
APOD hybrid model can quickly and accurately 
reconstruct the flow field in the centrifugal impeller. 
It is applied to predict the flow field response under 
the perturbations of the blade shape in the impeller 
optimization, which not only reduces the calculation 
cost of flow prediction but also improves the 
prediction accuracy of the surrogate model. 

Figure 13 presents the variation of the hydraulic 
performance of the pump with the number of 
iterations during the optimization process, where M0, 
H0, and η0 are the impeller torque, pump head and 
efficiency corresponding to the initial blade, 
respectively. As can be seen from this figure, with 
the increase of iteration number m, the impeller 
torque gradually decreases, and the efficiency of 
pump gradually increases. After 7 iterations, the 
pump efficiency reaches the maximum, and its head 
changes less compared with the initial design. In the 
next two iterations, the impeller torque increases 
gradually, the pump efficiency gradually decreases. 
Therefore, the result of the 7th iteration is taken as 
the final optimization result. Figure 14 shows the 
comparison between the optimized blade shape and 
the initial one. The optimized blade wrap angle φ is 
increased by 2˚, compared with the initial blade, and 
the blade outlet angle β2 is reduced by 5˚. 

The comparison of performance between the 
optimized and initial designs under different flow 
rate conditions is shown in Fig. 15. It can be seen that 
the efficiency of the optimized design is improved at  

 
Fig. 13. Variation of torque, head and efficiency 

of pump in the process of optimization. 
 

 
Fig. 14. Blade shapes of optimized design and 

initial design. 
 

 
Fig. 15. Performance curves of optimized design 

and initial design. 
 

all flow rate conditions. At the designed flow rate 
condition, the efficiency of the optimized design is 
improved by 1.27% compared with the initial design, 
and the head is basically unchanged. Comparing the 
performance curves of the optimized design and the 
initial design under low flow rate conditions, we can 
see that the head and efficiency of the pump are 
improved, in which the pump efficiency increases by 
2.53% and the head increases by 0.55m at the 0.6Qd 

(Qd is the flow rate of pump under the design 
condition.). By comparing the efficiency and head 
under high flow rate conditions, it can be found that 
the pump efficiency has been improved, and the head  
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(a)                                                                              (b) 

Fig. 16. Load distributions of optimized blade and initial blade: (a) Total pressure curve; (b) Load 
curve. 

 
 

 
(a)

 
(b)

Fig. 17. Turbulent kinetic energy distributions of optimized impeller and initial impeller: (a) Middle 
plane of impeller; (b) Meridional plane of impeller. 

 
 

has decreased slightly, with a decrease of less than 
1.0m. 

Figure 16(a) shows the total pressure distributions of 
the pressure side in the optimized blade and the 
initial blade. It can be seen from the figure that the 
total pressure distribution of the optimized blade near 
the outlet is larger than that of the initial blade. 
Figure 16(b) is the load distribution on the pressure 
side of the blade. We can see that the load of the 
optimized blade increases slowly near the inlet and 
increases rapidly after the relative streamline length 
of 0.2 compared to the initial blade. Moreover, the 
maximum load of the optimized blade moves 
forward, from the relative streamline length of 0.8 to 

the relative streamline length of 0.65. Compared with 
the initial blade, the load of blade outlet has a certain 
decrease, which is helpful to improve the stability of 
impeller outlet flow.  

The turbulent kinetic energy (TKE) of the initial 
impeller and optimized impeller was compared and 
analyzed. Figure 17(a) shows the TKE in the middle 
plane of impeller. It can be seen from this figure that 
the TKE of the initial impeller is obviously larger at 
the impeller outlet and blade suction side. In contrast, 
the TKE in the flow passage of optimized impeller is 
lower. Figure 17(b) presents the TKE distribution in 
the meridional plane, we can also see that the value 
of TKE at the impeller outlet and blade suction side 



X. B. Chen et al. / JAFM, Vol. 15, No. 2, pp. 453-464, 2022.  
 

463 

decreases significantly after optimization. Combined 
with Figs. 14 and 17, it can be seen that appropriately 
increasing the blade wrap angle and reducing the 
blade outlet angle can significantly decrease the TKE 
in the impeller, which can make the flow in the 
impeller more stable and the hydraulic loss lower. 

5. CONCLUSION 

(1) An APOD hybrid model based on the K-means 
clustering algorithm was used for blade inverse 
design of low specific speed centrifugal pump. 
The inverse design results show that the blade 
designed by the APOD hybrid model method is 
coincident with the original blade, and the 
corresponding load distribution is consistent 
with the original blade load. Compared with the 
FPOD hybrid model, the prediction accuracy of 
the APOD model is significantly higher in the 
blade inverse design. Therefore, the proposed 
inverse design method of centrifugal pump 
blade is feasible. 

(2) An optimization method of centrifugal impeller 
based on the APOD hybrid model was 
proposed. The flow field under the 
perturbations of the blade shape was accurately 
predicted using the APOD hybrid model. The 
accuracy of flow field prediction is significantly 
improved, and the calculated cost is greatly 
reduced in impeller optimization.  

(3) The optimization results show that the 
efficiency of the optimized design is improved 
at all flow rate conditions. The efficiency of the 
optimized design is 1.27% higher than that of 
the initial design at the designed flow rate 
condition, and the head is basically unchanged. 
Further, the efficiency increase reaches 2.53% 
at the 0.6Qd, and the head of the pump increases 
0.55m. The blade load distribution and flow 
structure in the impeller can be improved by 
increasing the blade wrap angle and decreasing 
the blade outlet angle. 
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