Bian, J, X. W. Cao, W. Yang, X. D. Song, C. C. Xiang, S. Gao (2019) Condensation characteristics of natural gas in the supersonic liquefaction process. Energy 168, 99–110.##
Bian, J, X. W. Cao, W. Yang, D. Guo, C. C. Xiang. (2020) Prediction of supersonic condensation process of methane gas considering real gas effects. Applied Thermal Engineering 164: 114508.##
Brown, S. N. and P. G. Williams (1975). Self-induced Separation. III. IMA. Journal of Applied Mathematics 16(2), 175-191.##
Cao, X. W., J. Bian (2019) Supersonic separation technology for natural gas processing: A review. Chemical Engineering and Processing - Process Intensification 136, 138-151.##
Cao, X. W., Y. Liu, X. R. Zang, D. Guo, J. Bian (2021) Supersonic refrigeration performances of nozzles and phase transition characteristics of wet natural gas considering shock wave effects. Case Studies in Thermal Engineering 24, 100833.##
Fujikawa, S., M. Okuda, T. Akamatsu and T. Goto (1987). Non-equilibrium vapour condensation on a shock-tube endwall behind a reflected shock wave. Journal of Fluid Mechanics 183, 293-324.##
Fujikawa, S., T. Yano and M. Watanabe (2011). Methods for the Measurement of Evaporation and Condensation Coefficients. In S. Fujikawa (ed.), Vapor-Liquid Interfaces, Bubbles and Droplets: Fundamentals and Applications, Berlin, Heidelberg, 71-109, Springer Berlin Heidelberg.##
Goldstein, R. (1964). Study of Water Vapor Condensation on ShockâTube Walls. The Journal of Chemical Physics 40(10), 2793-2799.##
Haylett, D. R., D. F. Davidson and R. K. Hanson (2012). Second-generation aerosol shock tube: an improved design. Shock Waves 22(6), 483-493.##
Honsek, R. and W. G. Habashi (2006). FENSAP-ICE: Eulerian Modeling of Droplet Impingement in the SLD Regime of Aircraft Icing. In 44th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics.##
Hsu, C. C., J. Y. Lee and D. C. Su (2005). Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry. Thin Solid Films 491(1),91-95.##
Jiang, W.M., J. Bian, Y. Liu, Z. L. Liu, L. Teng, G. Geng (2016). Investigation of flow characteristics and the condensation mechanism of ternary mixture in a supersonic nozzle. Journal of Natural Gas Science and Engineering 34, 1054-1061.##
Kanagawa, T., T. Yano, M. Watanabe and S. Fujikawa (2010). Unified Theory Based on Parameter Scaling for Derivation of Nonlinear Wave Equations in Bubbly Liquids. Journal of Fluid Science and Technology 5(3), 351-369.##
Kobayashi, K., K. Konno, H. Yaguchi, H. Fujii, T. Sanada and M. Watanabe (2016). Early stage of nanodroplet impact on solid wall. Physics of Fluids 28(3), 032002.##
Kobayashi, K., S. Watanabe, D. Yamano, T. Yano and S. Fujikawa (2008). Condensation coefficient of water in a weak condensation state. Fluid Dynamics Research 40(7-8), 585-596.##
Krehl, P. O. K. (2015). The classical Rankine-Hugoniot jump conditions, an important cornerstone of modern shock wave physics: ideal assumptions vs. reality. The European Physical Journal H 40(2), 159-204.##
Li, G., T. Ukai and K. Kontis (2019). Characterization of a novel open-ended shock tube facility based on detonation transmission tubing. Aerospace Science and Technology 94, 105388.##
Lighthill, M. J. (1953). On Boundary Layers and Upstream Influence. II. Supersonic Flows without Separation. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 217(1131), 478-507.##
Long, T., Z. G. Zhai, T. Si and X. S. Luo (2014). Design and validation of vertical annular shock tube for RM instabillty study. Jourmal of Experiments in Fluid Mechanics 28(06),86-91.##
Maerefat, M., T. Akamatsu and S. Fujikawa (1990). Non-equilibrium condensation of water and carbontetrachloride vapour in a shock-tube. Experiments in Fluids 9(6),345-351.##
Maerefat, M., S. Fujikawa, T. Akamatsu, T. Goto and T. Mizutani (1989). An experimental study of non-equilibrium vapour condensation in a shock-tube. Experiments in Fluids 7(8),513-520.##
Mark, H. (1985). The interaction of a reflected shock wave with the boundary layer in a shock tube. National Advisory Committee for Aeronautics.##
Matsumoto, M. and S. Fujikawa (1997). Nonequilibrium vapor condensation: molecular simulation and shock-tube experiment. Microscale Thermophysical Engineering 1(2),119-126.##
Mejia-Alvarez, R., B. Wilson, M. C. Leftwich, A. A. Martinez and K. P. Prestridge (2015). Design of a fast diaphragmless shock tube driver. Shock Waves 25(6),635-650.##
Myers, T. G., J. P. F. Charpin and C. P. Thompson (2002). Slowly accreting ice due to supercooled water impacting on a cold surface. Physics of Fluids 14(1),240-256.##
Myers, T. G. and D. W. Hammond (1999). Ice and water film growth from incoming supercooled droplets. International Journal of Heat and Mass Transfer 42(12),2233-2242.##
Pillai, A. and B. Prasad (2018). Effect of wall surface roughness on condensation shock. International Journal of Thermal Sciences 132,435-445.##
Stodola, A. (1927). Steam and Gas Turbines. Simulation of Industrial Processes for Control Engineers 3,20-23.##
Yano, T., K. Kobayashi and S. Fujikawa (2005). Condensation of methanol vapor onto its liquid film on a solid wall behind a reflected shock wave. AIP Conference Proceedings 762(1), 208-213.##
Zhang, M. Y., X. Chen, P. Liu, K. D. Yang and H. D. Zhu (2020). Design of Diaphragmless Shock Tube and Research on its Normal Temperature Characteristics. Journal of Physics: Conference Series 1601,062018.##
Zhou, G., K. Xu and F. Liu (2018). Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube. Physics of Fluids 30(1),016102.##