Aggarwal, S. K., T. W. Park and V. R. Katta (1996). Unsteady spray behavior in a heated jet shear-layer: droplet-vortex interactions. Combustion Science & Technology 113(1), 429−449.##
Armenio, V. and V. Fiorotto (2001). The importance of the forces acting on particles in turbulent flows. Physics of Fluids 13(8), 2437–2440.##
Birkhoff, G. (1953). Formation vortex street. Journal of Applied Physics 24(1), 98–103.##
Bloor, M. S. (1964). The transition to turbulence in the wake of a circular cylinder. Journal of Fluid Mechanics 19(2), 290–304.##
Bordás, R., V. John, E. Schmeyer and D. Thévenin (2013). Numerical methods for the simulation of a coalescence-driven droplet size distribution. Theoretical & Computational Fluid Dynamics 27(3−4), 253−271.##
Burger, M., R. Schmehl, R. Koch, S. Witting and H. J. Bauer (2006). DNS of droplet–vortex interaction with a Karman vortex street. International Journal of Heat & Fluid Flow 27(2), 181−191.##
Crowe, C. T., M. P. Sharma and D. E. Stock (1975). The particle-source-in cell (PSI-CELL) model for gas-droplet flow. Journal of Fluids Engineering 99(2), 325–332.##
Crowe, C. T., R. A. Gore and T. R. Troutt (1985). Particle dispersion by coherent structures in free shear flows. Particulate Science and Technology 3(3-4), 149–158.##
Crowe, C. T. (1991). The state-of-the-art in the development of numerical models for dispersed phase flows. In Proceedings of International Conference on Multiphase Flows, Tsukuba, Japan, 3, 49–60.##
Dougherty, N., J. Holt, B. Liu and J. O' Farrell (2006). Time-accurate Navier-Stokes computations of unsteady flows - The Karman vortex street. In Conference: 27th Aerospace Sciences Meeting.##
Eaton, J. K. and J. R. Fessler (1994). Preferential concentration of particles by turbulence. International Journal of Multiphase Flow 20(1), 169–209.##
Fan, J., K. Luo, M. Y. Ha and K. Cen (2004). Direct numerical simulation of a near-field particle-laden plane turbulent jet. Physical Review E 70(2), 026303.##
Fleckhaus, D., K. Hishida and M. Maeda (1987). Effect of laden solid particles on the turbulent flow structure of a round free jet. Experiments in Fluids 5(5), 323–333.##
Funakawa, M. (1969). The Vibration of a Cylinder Caused by Wake Force in a Flow. Bulletin of JSME 12(53), 1003–1010.##
Gerrard, J. H. (1966). The mechanics of the formation region of vortices behind bluff bodies. Journal of Fluid Mechanics 25(2), 401.##
Goldburg, A, W. K. Washburn and B. H. Florsheim (1965). Strouhal numbers for the hypersonic wakes of spheres and cones. AIAA Journal 3(7), 1332–1333.##
Henderson, R. D. (1995). Details of the drag curve near the onset of vortex shedding. Physics of Fluids 7(9), 2102–2104.##
Lazaro, B.J. and J.C. Lasheras (2006). Particle dispersion in the developing free shear-layer. I - Unforced flow. II - Forced flow. Journal of Fluid Mechanics 235, 179–221.##
Li, J., C. Wang, H. Ding, Z. Zhang and H. Sun (2018). EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics in annular mist flow of wet gas. IEEE Transactions on Instrumentation and Measurement 37(5), 1150–1160.##
Monkewitz, P. A. and L. N. Nguyen (1987). Absolute instability in the near-wake of two-dimensional bluff bodies. Journal of Fluids & Structures 1(2), 165–184.##
Norberg, C. (1994). Experimental investigation of the flow around a circular cylinder: Influence of aspect ratio. Journal of Fluid Mechanics 258, 287–316.##
Park, T. W., S. K. Aggarwal and V. R. Katta (1996). A numerical study of droplet-vortex interactions in an evaporating spray. International Journal of Heat & Mass Transfer 39(11), 2205−2219.##
Park, J., K. Kwon and H. Choi (1998). Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME International Journal 12(6), 1200–1205.##
Posdziech, O. and R. Grundmann (2007). A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. Journal of Fluids & Structures 23(3), 479–499.##
Qiao, J., R. Deng and C. H. Wang (2015). Particle motion in a Taylor vortex. International Journal of Multiphase Flow 77, 120–130.##
Qu, L., C. Norberg, L. Davidson, S. H. Peng and F. Wang (2013). Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. Journal of Fluids & Structures 39(5), 347–370.##
Roshko, A. (1954). On the wake and drag of bluff bodies. Journal of the Aeronautical Sciences 22, 124–132.##
Schmeyer, E., R. Bordás, D. Thévenin and V. John (2014). Numerical simulations and measurements of a droplet size distribution in a turbulent vortex street. Meteorologische Zeitschrift 23(4), 387−396.##
Takahiko, B., H. Yosuke and T. Katsuroku (2009). Spontaneous motion of a droplet evolved by resonant oscillation of a vortex pair. Physical Review E 79(1), 031602.##
Tang, L., C. T. Crowe, J. N. Chung and T. R. Troutt (1969). Effect of momentum coupling on the development of shear-layers in gas-particle mixtures. In Proceedings of International Conference on the Mecnics of Two-phase Flows, Taipei, Taiwan, 387–391.##
Tomohiko, T. and J. K. Eaton (2008). Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Journal of Fluids Engineering 101(11), 6037–6040.##
Williamson, C. H. K. and A. Roshko (1990). A. Measurements of base pressure in the wake of a cylinder at low Reynolds numbers. Zeitschrift fur Flugwissenschaften und Weltraumforschung 14(1), 38–46.##
Williamson, C. H. K. (1995). Vortex dynamics in the wake of a cylinder. In: Green, S.I. (Ed.), Fluid Vortices. Kluwer Academic Publishers, Amsterdam, Holland, 155–234.##
Williamson, C. H. K. and G. L. Brown (1998). A series in 1/√Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. Journal of Fluids & Structures 12(8), 1073–1085.##
Yang, X., N. H. Thomas and L. J. Guo (2000). Particle dispersion in organized vortex structures within turbulent free shear flow. Chemical Engineering Science 55(7), 1305–1324.##
Yang, Y., J. N. Chung, T. R. Troutt and C. T. Crowe (1993). The effects of particles on the stability of a two-phase wake flow. International Journal of Multiphase Flow 19(1), 137–149.##