Ainley, D. and G. Mathieson (1951). An examination of the flow and pressure losses in blade rows of axial-flow turbines. Technical report 1-35, HMSO.##
Arora, J. (2004). Introduction to optimum design (Elsevier).##
Balje, O. (1968). Axial turbine performance evaluation. Part A—Loss-Geometry relationships. Journal of Engineering for Gas Turbines and Power 90, 341–348.##
Basson, J. (2014). Design methodology of an axial-flow turbine for a micro jet engine. Ph. D. thesis, University of Stellenbosch, South Africa.##
Benner, M. W., S. A. Sjolander and S. H. Moustapha (2006a). An empirical prediction method for secondary losses in turbines-part I: A new loss breakdown scheme and penetration depth correlation. Journal of Turbomachinery 128(2), 273-280.##
Benner, M. W., S. A. Sjolander and S. H. Moustapha (2006b). An empirical prediction method for secondary losses in turbines-part II: A new secondary loss correlation. Journal of Turbomachinery 128(2), 281-291.##
Benner, M. W., S. A. Sjolander and S. H. Moustapha (2004). Measurements of secondary flows downstream of a turbine cascade at off-design incidence. In Proceeding of ASME TURBO EXPO 2004, Vienna, Austria, GT2004-53786.##
Chen, L. H. (2007). Aerodynamic optimization design of compressor blade based on neural network and genetic algorithm. Ph. D. thesis, Northwestern Polytechnical University, Xi an, China.##
Craig, H. and H. Cox (1970). Performance estimation of axial flow turbines. Proceedings of the Institution of Mechanical Engineers 185, 407–424.##
Davis, L. (1991). Handbook of genetic algorithms. Handbook of Genetic Algorithms.##
Deb, K., S. Agrawal, A. Pratap and T. Meyarivan (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Lecture Notes in Computerence 1917, 849-858.##
Dunham, J. and P. M. Came (1970). Improvements to the ainley-mathieson method of turbine performance prediction. Journal of Engineering for Gas Turbines and Power 92, 252–256.##
Ennil, A., R. K. Al-Dadaha, S. Mahmouda and A. M. Al-Jubori (2018, January). Optimization of small scale axial air turbine using ansys cfx. In Proceedings of 22 nd the IIER international conference, London, United Kingdom.##
Ferrari, V. (2008). Libsvm : A library for support vector machines. ACM Transactions on Intelligent Systems and Technology.##
Horn, J. (1994, July). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE.##
Huang, M. X. (2019). Research on Blade Optimization Design of Analysis Code Using Artificial Neural Network and Genetic Algorithm. Master's thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China.##
Kacker, S. C. and U. Okapuu (1982). A mean line prediction method for axial flow turbine efficiency. Journal of Engineering for Power 104,1 (1).##
Li, T. Y. (2019). Three-dimensional Numerical Simulation of An Entire Micro Turbojet Engine. Ph. D. thesis, Dalian University of Technology, China.##
Massardo, A., A. Satta and M. Ma (1990). e axial flow compressor design optimization. part ii: through-flow analysis. Journal of Turbomachinery 112(3), 405-410.##
Mckay, Beckman and Conover (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55-61.##
Mohamed, M. H. and S. Shaaban (2013). Optimization of blade pitch angle of an axial turbine used for wave energy conversion. Energy 56, 229–239.##
Moroz, L., Y. Govoruschenko, L. Romanenko and P. Pagur (2004, June). Methods and tools for multidisciplinary optimization of axial turbine stages with relatively long blades. In Asme turbo expo: Power for land, sea, and air, Vienna, Austria, GT2004-53379.##
Moustapha, H., A. Cooling, M. F. Zelesky and D. Japikse (2003). Axial and radial turbines. Concepts NREC.##
Moustapha, S. H., S. C. Kacker and B. Tremblay (1990). An improved incidence losses prediction method for turbine airfoils. Journal of Turbomachinery 112, 267–276.##
Mohamad, S. K., R. Mehrdad, S. Saeed, H. Patrick and N. Ahmad (2021). Robust optimization of the NASA C3X gas turbine vane under uncertain operational conditions. International Journal of Heat and Mass Transfer 164.##
Müller, K. R., A.J. Smola, G. Ratsch, B. Schlkopf, J. Kohlmorgen and V. Vapnik (1997, October). Predicting time series with support vector machines. In ICANN ’97: Proceedings of the 7th international conference on artificial neural networks, Springer, Berlin, Heidelberg.##
Murray, P. W. (2009). Microturbine for micro-cogeneration application. Ph. D. thesis, Queen's University, Canada.##
Park, J. S. (1994). Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning & Inference 39, 95–111.##
Picus, D. (1983). Computed tomography in the staging of esophageal carcinoma. Radiology 146, 433–438.##
Tian, B. L. (2003). A Survey of the Development of Engines for the Unmanned Aircraft and the Cruise Missile in the World. Aeroengine 29(4), 51-54.##
Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Ph. D. thesis, Cambridge, England.##
Smith, S. F. (1965). A simple correlation of turbine efficiency. Aeronautical Journal 69, 467–470.##
Sobol, I. (1990). On sensitivity estimation for nonlinear mathematical models. Keldysh Applied Mathematics Institute: 112–118.##
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55, 271–280.##
Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety 93, 964–979.##
Vapnik, V., S. E. Golowich and A. Smola (2008). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9, 281–287.##
Wakeley, J. and J. Hey (1997). Estimating ancestral population parameters. Genetics 145, 847–855.##
Yang, W. and R. Xiao (2014). Multiobjective optimization design of a Pump–Turbine impeller based on an inverse design using a combination optimization strategy. Journal of Fluids Engineering 136, 249–256.##
Zhao, W. and X. N. Wen (2003). Applied Statistics Course. Xidian University, Xian, China.##
Zhou, L., F. Xiang and Z. Wang (2018). CFD investigation on the application of optimum non-axisymmetric endwall profiling for a vaned diffuse. Journal of Applied Fluid Mechanics 11, 1703–1715.##
Zhu, J. and S. A. Sjolander (2005, June). Improved profile loss and deviation correlations for axial-turbine blade rows. In Asme turbo expo: Power for land, sea, and air, Reno-Tahoe, Nevada, USA, GT2005-69077.##
Zitzler, E., K. Deb and L. Thiele (1999). Comparison of multiobjective evolutionary algorithms on test functions of different difficulty.##