Allen, S. M. and J. W. Cahn (1976). Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta Metallurgica 24(5), 425-437.##
Amaya-Bower, L. and T. Lee (2010). Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method. Computers & Fluids 39(7), 1191-1207.##
Amaya-Bower, L. and T. Lee (2011). Numerical simulation of single bubble rising in vertical and inclined square channel using lattice Boltzmann method. Chemical Engineering Science 66(5), 935-952.##
Bao, J. and L. Schaefer (2013). Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios. Applied Mathematical Modelling 37(4), 1860-1871.##
Bhaga, D. and M. E. Weber (2006). Bubbles in viscous liquids: shapes, wakes and velocities. Journal of Fluid Mechanics 105, 61-85.##
Cahn, J. W. and J. E. Hilliard (1958). Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics 28(2), 258-267.##
Chiu, P. H. and Y. T. Lin (2011). A conservative phase field method for solving incompressible two-phase flows. Journal of Computational Physics 230(1), 185-204.##
Clift, R., J. R. G., M. E. Weber. (1978). Bubbles, drops, and particles. New York ; London, Academic Press.##
Ding, H., P. D. M. Spelt and C. Shu (2007). Diffuse interface model for incompressible two-phase flows with large density ratios. Journal of Computational Physics 226(2), 2078-2095.##
Ezzatneshan, E. (2017). Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method. Physics of Fluids 29(11), 113304.##
Ezzatneshan, E. (2019). Comparative study of the lattice Boltzmann collision models for simulation of incompressible fluid flows. Mathematics and Computers in Simulation 156, 158-177##
Ezzatneshan, E. and H. Vaseghnia (2020). Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects. Physica A: Statistical Mechanics and its Applications 541, 123258.##
Fakhari, A., D. Bolster and L. S. Luo (2017). A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades. Journal of Computational Physics 341, 22-43.##
Fakhari, A., M. Geier and D. Bolster (2019). A simple phase-field model for interface tracking in three dimensions. Computers & Mathematics with Applications 78(4), 1154-1165.##
Fakhari, A., M. Geier and T. Lee (2016). A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows. Journal of Computational Physics 315, 434-457.##
Fakhari, A., Y. Li, D. Bolster and K. T. Christensen (2018). A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale. Advances in Water Resources 114, 119-134.##
Fakhari, A., T. Mitchell, C. Leonardi and D. Bolster (2017). Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Physical Review E 96(5-1), 053301.##
Fakhari, A. and M. H. Rahimian (2010). Phase-field modeling by the method of lattice Boltzmann equations. Physical Review E 81(3 Pt 2), 036707.##
Geier, M., A. Fakhari and T. Lee (2015). Conservative phase-field lattice Boltzmann model for interface tracking equation. Physical Review E 91(6), 063309.##
Hejranfar, K. and E. Ezzatneshan (2015). Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method. Phys Rev E Stat Nonlin Soft Matter Phys 92(5), 053305.##
Holdych, D. J., D. Rovas, J. G. Georgiadis and R. O. Buckius (2011). An Improved Hydrodynamics Formulation for Multiphase Flow Lattice-Boltzmann Models. International Journal of Modern Physics C 09(08), 1393-1404.##
Inamuro, T., T. Ogata, S. Tajima and N. Konishi (2004). A lattice Boltzmann method for incompressible two-phase flows with large density differences. Journal of Computational Physics 198(2), 628-644.##
Lee, T. (2009). Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids. Computers & Mathematics with Applications 58(5), 987-994.##
Lee, T. (2019). Fully implicit force splitting scheme to two-phase lattice Boltzmann equation in pressure-velocity formulation. 72nd Annual Meeting of the APS Division of Fluid Dynamics 64(13), November 23–26, Seattle, Washington.##
Lee, T. and C. L. Lin (2005). A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. Journal of Computational Physics 206(1), 16-47.##
Lee, T. and L. Liu (2010). Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. Journal of Computational Physics 229(20), 8045-8063.##
Liang, H., B. C. Shi, Z. L. Guo and Z. H. Chai (2014). Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Physical Review E 89(5), 053320.##
Liang, H., J. Xu, J. Chen, H. Wang, Z. Chai and B. Shi (2018). Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows. Physical Review E 97(3), 033309.##
Lou, Q. and Z. Guo (2015). Interface-capturing lattice Boltzmann equation model for two-phase flows. Physical Review E 91(1), 013302.##
Lou, Q., Z. L. Guo and B. C. Shi (2012). Effects of force discretization on mass conservation in lattice Boltzmann equation for two-phase flows. EPL (Europhysics Letters) 99(6), 64005.##
Lycett-Brown, D. and K. H. Luo (2015). Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios. Physical Review E 91(2), 023305.##
Mattila, K. K., D. N. Siebert, L. A. Hegele and P. C. Philippi (2013). High-Order Lattice-Boltzmann Equations and Stencils for Multiphase Models. International Journal of Modern Physics C 24(12), 1340006 .##
Otomo, H., R. Zhang and H. Chen (2019). Improved phase-field-based lattice Boltzmann models with a filtered collision operator. International Journal of Modern Physics C 30(10), 1941009.##
Ren, F., B. Song, M. C. Sukop and H. Hu (2016). Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Physical Review E 94(2-1), 023311.##
Spencer, T. J., I. Halliday and C. M. Care (2011). A local lattice Boltzmann method for multiple immiscible fluids and dense suspensions of drops. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 369(1944), 2255-2263.##
Su, T., Y. Li, H. Liang and J. Xu (2018). Numerical study of single bubble rising dynamics using the phase field lattice Boltzmann method. International Journal of Modern Physics C 29(11), 1850111.##
Sun, Y. and C. Beckermann (2007). Sharp interface tracking using the phase-field equation. Journal of Computational Physics 220(2), 626-653.##
Tölke, J., G. D. Prisco and Y. Mu (2013). A lattice Boltzmann method for immiscible two-phase Stokes flow with a local collision operator. Computers & Mathematics with Applications 65(6), 864-881.##
Wang, H., X. Yuan, H. Liang, Z. Chai and B. Shi (2019). A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity 2(3), 33-52.##
Wang, H. L., Z. H. Chai, B. C. Shi and H. Liang (2016). Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Physical Review E 94(3-1): 033304.##
Wang, Y., C. Shu, J. Y. Shao, J. Wu and X. D. Niu (2015). A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio. Journal of Computational Physics 290, 336-351.##
Weil, K. G. (1984). J. S. Rowlinson and B. Widom: Molecular Theory of Capillarity, Clarendon Press, Oxford 1982. 327 Seiten. Berichte der Bunsengesellschaft für physikalische Chemie 88(6), 586-586.##
Yan, X., Y. Ye, J. Chen, X. Wang and R. Du (2021). Improved multiple-relaxation-time lattice Boltzmann model for Allen–Cahn equation. International Journal of Modern Physics C, 32(7), 2150086. ##
Yang, J. and E. S. Boek (2013). A comparison study of multi-component Lattice Boltzmann models for flow in porous media applications. Computers & Mathematics with Applications 65(6), 882-890.##
Zhao, W., Y. Zhang and B. Xu (2019). An improved pseudopotential multi-relaxation-time lattice Boltzmann model for binary droplet collision with large density ratio. Fluid Dynamics Research 51(2), 025510.##
Zu, Y. Q. and S. He (2013). Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Physical Review E 87(4), 043301.##