Abdelaziz, A. and R. E. Khayat (2022). On the non-circular hydraulic jump for an impinging inclined jet. Physics of Fluids 34(2), 023603.##
Bhushan, B. and Y. C. Jung (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science 56(1), 1–108.##
Bizjan, B., B. Širok and M. Blagojevič (2021). Free surface lubrication of rotating cylinders by impacting Newtonian liquid jet. Lubrication Science 33(8), 439–449.##
Blake, T. D. (2006). The physics of moving wetting lines. Journal of Colloid and Interface Science 299(1), 1–13.##
Cardin, K., S. Wang, O. Desjardins and M. Weislogel (2021). Rebound of large jets from superhydrophobic surfaces in low gravity. Physical Review Fluids 6(1), 014003.##
Chatterjee, N. and M. Flury (2013). Effect of particle shape on capillary forces acting on particles at the air-water interface. Langmuir 29(25), 7903–7911.##
Craik, A. D. D., R. C. Latham, M. J. Fawkes and P. W. F. Gribbon (1981). The circular hydraulic jump. Journal of Fluid Mechanics 112, 347–362.##
de la Cruz, R. M. and S. A. Mäkiharju (2022). Jet impingement on the underside of a superhydrophobic surface. Journal of Fluid Mechanics 938, A4.##
Duez, C., C. Ybert, C. Clanet and L. Bocquet (2007). Making a splash with water repellency. Nature Physics 3(March), 180–183.##
Eral, H. B., T. Mannetje, D. J. C. M. and J. M. Oh (2013). Contact angle hysteresis: A review of fundamentals and applications. Colloid and Polymer Science 291, 247‒260.##
Erbil, H. Y., A. L. Demirel, Y. Avci and O. Mert (2003). Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611), 1377–1380.##
Jambon-Puillet, E., W. Bouwhuis, J. H.Snoeijer and D. Bonn (2019). Liquid Helix: How Capillary Jets Adhere to Vertical Cylinders. Physical Review Letters 122(18), 184501.##
Kate, R. P., P. K. Das and S. Chakraborty (2007). Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface. Journal of Fluid Mechanics 573, 247–263.##
Kibar, A. (2016). Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation. Fluid Dynamics Research 48(1), 015501.##
Kibar, A. (2017). Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces. Fluid Dynamics Research 49(1), 015502.##
Kibar, A. (2018a). Experimental and numerical investigation on a liquid jet impinging on a vertical superhydrophobic surface: spreading and reflection. Progress in Computational Fluid Dynamics, An International Journal 18, 150-63.##
Kibar, A. (2018b). The Spreadıng Profıle Of An Impıngıng Lıquıd Jet On The Hydrophobıc Surfaces. Sigma Journal of Engineering and Natural Sciences 36(3), 609–618.##
Kibar, A., H. Karabay, K. S. Yiǧit, I. O. Ucar and H. Y. Erbil (2010). Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces. Experiments in Fluids 49, 1135–1145.##
Landel, J. R. and D. I. Wilson (2021). The Fluid Mechanics of Cleaning and Decontamination of Surfaces. In Annual Review of Fluid Mechanics 53, 147-171.##
Latthe, S. S., R. S. Sutar, V. S. Kodag, A. K. Bhosale A. M.Kumar, K. Kumar Sadasivuni, R. Xing and S. Liu (2019). Self – cleaning superhydrophobic coatings: Potential industrial applications. Progress in Organic Coatings 128, 52–58.##
Li, P., L. Yang and Q. Fu (2021). Effect of surface contact angle on the wall impingement of a power-law liquid jet. Physics of Fluids 33(4) 043105.##
Linder, N., A. Criscione, I. V. Roisman, H. Marschall and C. Tropea (2015). 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis. Theoretical and Computational Fluid Dynamics 29(5–6), 373–390.##
Lu, Q., R. Muthukumar, H. Ge and S. Parameswaran (2020). Numerical study of a rotating liquid jet impingement cooling system. International Journal of Heat and Mass Transfer 163, 120446.##
Mertens, K., V. Putkaradze and P. Vorobieff (2005). Morphology of a stream flowing down an inclined plane. Part 1. Braiding. Journal of Fluid Mechanics 531, 49–58.##
Prince, J. F., D. Maynes and J. Crockett (2015). On jet impingement and thin film breakup on a horizontal superhydrophobic surface. Physics of Fluids 27(11), 112108.##
Satpathi, N. S., L. Malik, A. S. Ramasamy and A. K. Sen (2021). Drop impact on a superhydrophilic spot surrounded by a superhydrophobic surface. Langmuir 37(48), 14195–14204.##
Sen, U., S. Chatterjee, J. Crockett, R. Ganguly, L. Yu and C. M. Megaridis (2019). Orthogonal liquid-jet impingement on wettability-patterned impermeable substrates. Physical Review Fluids 4(1), 014002.##
Shi, L., Y. Li, Y. Meng, G. Hu and Y. Tian (2018). Fluid Property Effects on the Splashing in Teapot Effect. The Journal of Physical Chemistry C 122(37), 21411–21417.##
Varshney, P. and S. S. Mohapatra (2018). Durable and regenerable superhydrophobic coatings for brass surfaces with excellent self-cleaning and anti-fogging properties prepared by immersion technique. Tribology International 123, 17–25.##
Wu, Y., Y. Shen, J. Tao, Z. He, Y. Xie, H. Chen, M. Jin and W. Hou (2018). Facile spraying fabrication of highly flexible and mechanically robust superhydrophobic F-SiO2@PDMS coatings for self-cleaning and drag-reduction applications. New Journal of Chemistry 42(22), 18208–18216.##
Yang, L. J., P. H. Li and Q. F. Fu (2020). Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces. International Journal of Multiphase Flow 125, 103192.##
Yao, X., W. Jiang, J. Yang, J. Fang and W. Zhang (2021). A Surface Energy Approach to Developing an Analytical Model for the Underfill Flow Process in Flip-Chip Packaging. Journal of Electronic Packaging, 144(4), 041003.##
Zhang, L., J. Wu, M. N. Hedhili, X. Yang and P. Wang (2015). Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces. Journal of Materials Chemistry A . 3(6), 2844-2852. ##