Akbari, M. A., J. Mohammadi and J. Fereidooni (2021). Stability of oblique water entry of cylindrical projectiles. Journal of Applied Fluid Mechanics 14(1), 301-314.##
Aristoff, J. M. and J. W. M. Bush (2009). Water entry of small hydrophobic spheres. Journal of Fluid Mechanics 619,45-78.##
Aristoff, J. M., T. T. Truscott, A. H. Techet and J. W. M. Bush (2010). The water entry of decelerating spheres. Physics of Fluids 625,135-165.##
Bodily, K. G.,S. J. Carlson and T. T. Truscott (2014). The water entry of slender axisymmetric bodies. Physics of Fluids 26(7), 45-78.##
Choi, J. H., R. C. Penmetsa and R. V. Grandhi (2005). Shape optimization of the cavitator for a supercavitating torpedo. Structural and Multidisciplinary Optimization 29(2), 159-167.##
Fan, C. Y., Z. L. Li, B. C. Khoo and M. C. Du (2019). Supercavitation phenomenon research of projectiles passing through density change area. Aip Advances 9(4).##
Forouzani, H., B. Saranjam and R. Kamali (2018). A study on the motion of high-speed supercavitating projectiles. Journal of Applied Fluid Mechanics 11(6), 1727-1738.##
Gao, J. G., Z. H. Chen, Z. G. Huang, W. T. Wu and Y. J. Xiao (2019). Numerical investigations on the oblique water entry of high-speed projectiles. Applied Mathematics and Computation 362.##
Gaudet, S (1998). Numerical simulation of circular disks entering the free surface of a fluid. Physics of Fluids 10(10), 2489-2499.##
Gilbarg, D. and R. A. Anderson (1948). Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. Journal of Applied Physics 19(2), 127-139.##
Guo, Z. T (2012). Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums. Ph. D. thesis, Harbin Institute of Technology, Harbin, China.##
Jafarian, A. and A. Pishevar (2016). Numerical Simulation of Steady Supercavitating Flows. Journal of Applied Fluid Mechanics 9(6), 2981-2992.##
Lee, M., R. G. Longoria and D. E. Wilson (1997) . Cavity dynamics in high-speed water entry. Physics of Fluids 9(03), 540-550.##
Logvinovich, G. V. (1973). Hydrodynamics of flows with free boundaries. Halsted Press.##
May, A. (1952). Vertical entry of missiles into water. Journal of Applied Physics 23(12), 1362-1372.##
Meng, Q. C., W. B. Yi., M. Y. Hu., Z. H. Zhang and J. B. Liu (2019). Study on Cavity Profile and Hydrodynamics of High-speed Vertical Water Entry of Projectile. Shipbuilding of China 60(03),12-26.##
Menter, F. R., M. Kuntz and R. Langtry (2003). Ten years of industrial experience with the SST turbulence model. Turbulence Heat & Mass Transfer 4, 625-632.##
Nair, V. V. and S. K. Bhattacharyya (2018). Water entry and exit of axisymmetric bodies by CFD approach. Journal of Ocean Engineering and Science 3(2),156-174.##
Schnerr, G. H. and J. Sauer (2001). Physical and numerical modeling of unsteady cavitation dynamics. Fourth International Conference on Multiphase Flow (Vol. 1).##
Shang, Z (2013). Numerical investigations of supercavitation around blunt bodies of submarine shape. Applied Mathematical Modelling 37(20-21), 8836-8845.##
Shi, Y., G. H. Wang and G. Pan (2019). Experimental study on cavity dynamics of projectile water entry with different physical parameters. Physics of Fluids 31(6).##
Sorensen, B. R., K. D. Kimsey and B. M. Love (2008). High-velocity impact of low-density projectiles on structural aluminum armor. International Journal of Impact Engineering 35(12), 1808-1815.##
Wang, X. F., J. B. Liu, B. Wu, D. F. Kong, J. R. Huang, X. Y. Xu and X. Bao (2020). Cratering for Impact of Hypervelocity Projectiles into Granite Targets within a Velocity Range of 1.91-3.99 km/s: Experiments and Analysis. Applied Sciences-Basel, 10(4).##
Yao, E. R., H. R. Wang, L. Pan, X. B. Wang and R. H. Woding (2014). Vertical water-entry of bullet-shaped projectiles. Journal of Applied Mathematics and Physics (2), 323-334.##
Zhang, H., H. F. Wang, Q. B. Yu, Y. F. Zheng, G. C. Lu and C. Ge (2021). Perforation of double-spaced aluminum plates by reactive projectiles with different densities. Materials 14(5).##