Ahmed, S. A. (1998). Velocity measurements and turbulence statistics of a confined isothermal swirling flow. Experimental Thermal and Fluid Science 17(3), 256-264.##
Ahmed, S. A. and A. S. Nejad (1992). Velocity measurements in a research combustor part 1: Isothermal swirling flow. Experimental Thermal and Fluid Science 5(2), 162-174.##
Ahmed, S. A. and A. S. Nejad (no date) Experimental data repository, European Research Community on Flow, Turbulence and Combustion. Available at: http://cfd.mace.manchester.ac.uk/ercoftac/
doku.php?id=cases:case001.##
Al-Abdeli, Y. M. and A. R. Masri (2015). Review of laboratory swirl burners and experiments for model validation. Experimental Thermal and Fluid Science 69, 178-196.##
Alekseenko, S. V., P. A. Kuibin, V. L. Okulov and S. I. Shtork (1999). Helical vortices in swirl flow. Journal of Fluid Mechanics 382, 195-243.##
Anacleto, P. M., E. C. Fernandes, M. V. Heitor and S. I. Shtork (2003). Swirl flow structure and flame characteristics in a model lean premixed combustor. Combustion Science and Technology 175(8), 1369-1388.##
Beér, J. M., J. Chomiak and L. D. Smoot (1984). Fluid dynamics of coal combustion: A review. Progress in Energy and Combustion Science 10(2), 177-208.##
Benesch, W. and H. Kremer (1985). Mathematical modelling of fluid flow and mixing in tangentially fired furnaces. Symposium (International) on Combustion 20(1), 549–557.##
Bezaatpour, M. and M. Goharkhah (2020). Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow. Applied Thermal Engineering 167, 114801.##
Boushaki, T., A. Koched, Z. Mansouri and F. Lespinasse (2017). Volumetric velocity measurements (V3V) on turbulent swirling flows. Flow Measurement and Instrumentation 54, 46-55.##
Brown, G. L. and J. M. Lopez (1990a). Axisymmetric vortex breakdown part 1. Confined swirling flow. Journal of Fluid Mechanics 221, 553-576.##
Brown, G. L. and J. M. Lopez (1990b). Axisymmetric vortex breakdown part 2. physical mechanisms. Journal of Fluid Mechanics 221, 553-576.##
Cary, A. W. and D. L. Darmofal (2003). Axisymmetric and Non-Axisymmetric initiation of vortex breakdown. 069, 1–23.##
Chen, S., B. He, D. He, Y. Cao, G. Ding, X. Liu, Z. Duan, X. Zhang, J. Song and X. Li (2017). Numerical investigations on different tangential arrangements of burners for a 600MW utility boiler. Energy 122, 287-300.##
Doherty, T. O. (2001). Vortex breakdown : a review. Progress in Energy and Combustion Science 27, 431-481.##
Escudier, M. P. (1984). Observations of the flow produced in a cylindrical container by a rotating endwall. Experiments in Fluids 2(4), 189-196.##
Escudier, M. P., J. Bornstein and N. Zehnder (1980). Observations and LDA measurements of confined turbulent vortex flow. Journal of Fluid Mechanics 98(1), 49-63.##
Gaikwad, P., H. Kulkarni and S. Sreedhara (2017). Simplified numerical modelling of oxy-fuel combustion of pulverized coal in a swirl burner. Applied Thermal Engineering 124, 734-745.##
Gerz, T. and T. Ehret (1997). Wingtip Vortices and Exhaust Jets during the Jet Regime of Aircraft Wakes. Aerospace Science and Technology 1(7), 463-474.##
Gupta, A., D. G. Lilley and N. syred (1984) Swirl Flows, Abacus Press.##
Harvey, J. K. (1962). Some observations of the vortex breakdown phenomenon. Journal of Fluid Mechanics 14(4), 585-592.##
Ko, J. (2005). Numerical Modelling of Highly Swirling Flows in a Cylindrical Through-Flow Hydrocyclone. Thesis, Royal Institute of Technology, Sweden.##
Mansouri, Z. and T. Boushaki (2018). Experimental and numerical investigation of turbulent isothermal and reacting flows in a non-premixed swirl burner. International Journal of Heat and Fluid Flow 72, 200-213.##
Serre, E. and P. Bontoux (2002). Vortex breakdown in a three-dimensional swirling flow. Journal of Fluid Mechanics 459, 347-370.##
Stone, C. and S. Menon (2001). Combustion Instabilities in Swirling Flows. In 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, U.S.A.##
Syred, N. and J. M. Beer (1974). Combustion in swirling flows : a review. Combustion and Flame 201(2), 143-201.##
Villasenor, R. and R. Escalera (1998). A highly radiative combustion chamber for heavy fuel oil combustion. International Journal of Heat and Mass Transfer 41(20), 3087-3097.##
Wang, P., X. S. Bai, M. Wessman and J. Klingmann (2004). Large eddy simulation and experimental studies of a confined turbulent swirling flow. Physics of Fluids 16(9) 3306-3324.##
Wang, Y., X. Wang and V. Yang (2018). Evolution and transition mechanisms of internal swirling flows with tangential entry. Physics of Fluids 30(1), 013601.##
Wang, Y. and V. Yang (2018). Central recirculation zones and instability waves in internal swirling flows with an annular entry. Physics of Fluids 30(1), 013602.##
Weber, R., B. M. Visser and F. Boysan (1990). Assessment of turbulence modeling for engineering prediction of swirling vortices in the near burner zone. International Journal of Heat and Fluid Flow 11(3), 225-235.##
Xia, J. L., G. Yadigaroglu, Y. S. Liu, J. Schmidli and B. L. Smith (1998). Numerical and experimental study of swirling flow in a model combustor. International Journal of Heat and Mass Transfer 41(11), 1485-1491.##
Zhao, B., Y. Ren, D. Gao and L. Xu (2019). Performance ratio prediction of photovoltaic pumping system based on grey clustering and second curvelet neural network. Energy 171, 360-371.##
Zhao, B., H. Chen, D. Gao and L. Xu (2020). Risk assessment of refinery unit maintenance based on fuzzy second generation curvelet neural network. Alexandria Engineering Journal 59(3), 1823-1831.##
Zhao, B. and H. Song (2021). Fuzzy Shannon wavelet finite element methodology of coupled heat transfer analysis for clearance leakage flow of single screw compressor. Engineering with Computers 37(3), 2493–2503. ##