Acharya, T. and L. Casimiro (2020). Evaluation of flow characteristics in an onshore horizontal separator using computational fluid dynamics. Journal of Ocean Engineering and Science 5(3), 261-268.##
Anderson, E. J. and M. A. Grosenbaugh (2005). Jet flow in steadily swimming adult squid. Journal of Experimental Biology 208(6), 1125-1146.##
Borazjani, I. and F. Sotiropoulos (2008). Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology 211(10), 1541-1558.##
Borazjani, I. and F. Sotiropoulos (2010). On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Journal of Experimental Biology 213(1), 89-107.##
Borazjani, I., F. Sotiropoulos, E. D. Tytell and G. V. Lauder (2012). Hydrodynamics of the bluegill sunfish C-start escape response: Three-dimensional simulations and comparison with experimental data. Journal of Experimental Biology 215(4), 671-684.##
Carling, J., T. L. Williams and G. Bowtell (1998). Self-propelled anguilliform swimming: Simultaneous solution of the two-dimensional Navier-Stokes equations and Newton’s laws of motion. Journal of Experimental Biology 201(23), 3143-3166.##
Carrica, P. M., A. M. Castro and F. Stern (2010). Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. Journal of Marine Science and Technology 15(4), 316-330.##
Carrica, P. M., R. V. Wilson, R. W. Noack and F. Stern (2007). Ship motions using single-phase level set with dynamic overset grids. Computers and Fluids 36(1), 1415-1433.##
Coelho, R. C. V., N. A. M. Araujo and M. M. Telo da Gama (2020). Propagation of active nematic–isotropic interfaces on substrates. Soft Matter 16(17), 4256-4266.##
Dong, G. and X. Lu (2005). Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate. International Journal for Numerical Methods in Fluids 48(12), 1351-1373.##
Doustdar, M. M. and H. Kazemi (2019). Effects of fixed and dynamic mesh methods on simulation of stepped planing craft. Journal of Ocean Engineering and Science 4(1), 33-48.##
Duman, S. and S. Bal (2019). A quick-responding technique for parameters of turning maneuver. Ocean Engineering 179(5), 189-201.##
Feilich, K. L. and G. V. Lauder (2015). Passive mechanical models of fish caudal fins: Effects of shape and stiffness on self-propulsion. Bioinspiration and Biomimetics 10(3), 036002.##
Feng, Y., Y. Su, H. Liu and Y. Su (2020). Numerical simulation of a self-propelled fish-like swimmer with rigid and flexible caudal fins. Journal of Environmental Biology 3(2), 54-67.##
Fetherstonhaugh, S. E. A. W., Q. Shen and O. Akanyeti (2021). Automatic segmentation of fish midlines for optimizing robot design. Bioinspiration and Biomimetics 16(4), 046005.##
Guo, S., K. Sugimoto, S. Hata, J. Su and K. Oguro (2000). A new type of underwater fish-like microrobot. IEEE International Conference on Intelligent Robots and Systems 2, 867-872.##
Jiang, W., Y. Zhang and A. Yang (2019). Numerical simulations of complex aircraft configurations using structured overset grids with implicit hole-cutting. Aerospace Science and Technology 94, 105402.##
Kern, S. and P. Koumoutsakos (2006). Simulations of optimized anguilliform swimming. Journal of Experimental Biology 209(24), 4841-4857.##
Lee, J. and D. You (2013). An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations. Journal of Computational Physics 233(1), 295-314.##
Leroyer, A. and M. Visonneau (2005). Numerical methods for RANSE simulations of a self-propelled fish-like body. Journal of Fluids and Structures 20(7), 975-991.##
Li, N., J. Zhuang, Y. Zhu, G. Su and Y. Su (2021). Fluid dynamics of a self-propelled biomimetic underwater vehicle with pectoral fins. Journal of Ocean Engineering and Science 6(2), 160-169.##
Liao, P., S. Zhang and D. Sun (2018). A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism. Bioinspiration and Biomimetics 13(3), 036007.##
Liu, B., S. Zhang, F. Qin and J. Yang (2014). Fluid-structure interaction study on the performance of flexible articulated caudal fin. Advanced Robotics 28(24), 1665-1676.##
Liu, G., S. Liu, Y. Xie, D. Leng and G. Li (2020). The Analysis of Biomimetic Caudal Fin Propulsion Mechanism with CFD. Applied Bionics and Biomechanics, 1-11.##
Moreira, D., N. Mathias and T. Morais (2020). Dual flapping foil system for propulsion and harnessing wave energy: A 2D parametric study for unaligned foil configurations. Ocean Engineering 215(12), 107875.##
Ohashi, K., T. Hino, H. Kobayashi, N. Onodera and N. Sakamoto (2019). Development of a structured overset Navier-Stokes solver with a moving grid and full multigrid method. Journal of Marine Science and Technology 24(3), 884-901.##
Olcay, A. B., M. T. Malazi, A. Okbaz, H. Heperkan, E. Firat, V. Ozbolat, H. Heperkan, E. Firat,V. Ozbolat, M. G. Gokcen, B. Sahin (2017). Experimental and numerical investigation of a longfin inshore squid’s flow characteristics. Journal of Applied Fluid Mechanics 10(1), 21-30.##
Park, Y. J., U. Jeong, J. Lee, S. R. Kwon, H. Y. Kim and K. J. Cho (2012). Kinematic condition for maximizing the thrust of a Robotic Fish using a compliant caudal fin. IEEE Transactions on Robotics 28(6), 1216–1227.##
Rahman, M. M., Y. Toda and H. Miki (2011). Computational Study on a Squid-Like Underwater Robot with Two Undulating Side Fins. Journal of Bionic Engineering 8(1), 25-32.##
Roper, D. T., S. Sharma, R. Sutton and P. Culverhouse (2011). A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment 225(2), 77–96.##
Schultz, W. W. and P. W. Webb (2002). Power requirements of swimming: Do new methods resolve old questions? Integrative and Comparative Biology 42(5), 1018-1025.##
Seo, J. H. and R. Mittal (2011). A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. Journal of Computational Physics 230(19), 7347-7363.##
Sfakiotakis, M., D. M. Lane and J. B. C. Davies (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering 24(2), 237-252.##
Singh, N., A. Gupta and S. Mukherjee (2019). A dynamic model for underwater robotic fish with a servo actuated pectoral fin. SN Applied Sciences 1(7), 1-9.##
Singh, Y., S. K. Bhattacharyya and V. G. Idichandy (2017). CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results. Journal of Ocean Engineering and Science 2(2), 90-119.##
Su, G., H. Shen, N. Li, Y. Zhu and Y. Su (2021). Numerical investigation of the hydrodynamics of stingray swimming under self-propulsion. Journal of Fluids and Structures 106, 103383.##
Suebsaiprom, P. and C. L. Lin (2015). Maneuverability modeling and trajectory tracking for fish robot. Control Engineering Practice 45, 22-36.##
Wang, J. and D. Wan (2020). CFD study of ship stopping maneuver by overset grid technique. Ocean Engineering 197(1), 106895.##
Wu, Z., J. Yu, M. Tan and J. Zhang (2014). Kinematic comparison of forward and backward swimming and maneuvering in a self-propelled sub-carangiform robotic fish. Journal of Bionic Engineering 11(2), 199-212.##
Wynn, R. B., V. A. I. Huvenne, T. P. Le Bas, B. J. Murton, D. P. Connelly, B. J. Bett, H. A. Ruhl, K. J. Morris, J. Peakall, D. R. Parsons, E. J. Sumner, S. E. Darby, R. M. Dorrell, J. E. Hunt (2014). Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology 352, 451-468.##
Xia, D., Q. Yin, Z. Li, W. Chen, Y. Shi and J. Dou (2021). Numerical study on the hydrodynamics of porpoising behavior in dolphins. Ocean Engineering 229(4), 108985.##
Xia, D., W. Chen, J. Liu and X. Luo (2018). The energy-saving advantages of burst-and-glide mode for thunniform swimming. Journal of Hydrodynamics 30(6), 1072-1082.##
Xia, D., W. Chen, J. Liu, Z. Wu and Y. Cao (2015). The three-dimensional hydrodynamics of thunniform swimming under self-propulsion. Ocean Engineering 110(12), 1-14.##
Xie, O., B Li and Q. Yan (2018). Computational and experimental study on dynamics behavior of a bionic underwater robot with multi-flexible caudal fins. Industrial Robot 45(2), 267-274.##
Xu, Y. and D. Wan (2012). Numerical simulation of fish swimming with rigid pectoral fins. Journal of Hydrodynamics 24(2), 263-272.##
Yang, L, Y. Su, Q. Xiao (2011). Numerical Study of Propulsion Mechanism for Oscillating Rigid and Flexible Tuna-Tails. Journal of Bionic Engineering 8(4), 406-417.##
Yu, J., C. Zhang and L. Liu (2016). Design and control of a single-motor-actuated robotic fish capable of fast swimming and maneuverability. IEEE/ASME Transactions on Mechatronics 21(3), 1711-1719.##
Yu, J., L. Wang and M. Tan (2007). Geometric optimization of relative link lengths for biomimetic robotic fish. IEEE Transactions on Robotics 23(2), 382-386.##
Zhang, S., Y. Qian, P. Liao, F. Qin and J. Yang (2016). Design and Control of an Agile Robotic Fish with Integrative Biomimetic Mechanisms. IEEE/ASME Transactions on Mechatronics 21(4), 1846-1857. ##