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ABSTRACT 

Flow control has a tremendous technological and economic impact, such as 

aerodynamic drag reduction on road vehicles which translates directly into fuel 

savings, with a consequent reduction in greenhouse gas emissions and operating 

costs. In recent years, machine learning has also been used to develop new 

approaches to flow control in place of more laborious methods, such as parametric 

studies, to find optimal parameters with few exceptions. This paper proposes an 

intelligent passive device generator (IPDG) that combines computational fluid 

dynamics (CFD) and genetic algorithm, more specifically, the Non-dominated 

Sorting Genetic Algorithm II (NSGA II). The IPDG is not application specific and 

can be applied to generate various devices in the given design space. In particular, 

it creates three-dimensional passive flow control devices with unique shapes that 

are aerodynamically efficient in terms of the cost function (i.e., aerodynamic drag 

and lift). In this paper, the IPDG is demonstrated using a rear flap and an underbody 

diffuser as passive devices. The three-dimensional Reynolds-averaged Navier-

stokes (RANS) equations were used to solve the problem. Relative to the baseline, 

the IPDG generated flap-only, and diffuser-only provide drag reductions of 6.3% 

and 5.4%, respectively, whereas the flap-diffuser combination provides a drag 

reduction of 7.4%. Furthermore, the increase in the downforce is significant from 

624.4% in flap-only to 4930% and 4595% in the diffuser and flap-diffuser 

combination. The proposed method has the potential to evolve into a universal 

passive device generator with the integration of machine learning. 
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1. INTRODUCTION 

 In the last ten years, there has been renewed interest in 

the study of how to regulate turbulent flows, in particular for 

the aim of lowering drag (Noack, 2019). The control of wake 

flows has sparked considerable interest due to its importance 

in a wide range of applications. The flow control tactics 

frequently focus on drag reduction (DR) along with the 

control of lift, downforce, soiling, and stability of the road 

vehicle in question. The development of effective flow 

control strategies is a difficult goal, particularly when the 

answer is based solely on restricted velocity or pressure data 

retrieved from the fluid flow (Duriez et al., 2013). The flow 

control problem is, at heart, a functional optimization 

problem wherein the state of the dynamical system must be 

inferred from a small set of measured variables. The goal is 

to identify a control function for the regulated flow 

configuration that reduces a cost function. In the context of 

classifying control techniques, distinguishing between 

model-based and model-free control is a key distinction. In 

the latter, a model of the dynamical system is not imposed in 

order to derive an optimal control law. Recent years have 

seen a meteoric rise in the use of such methods, mostly due 

to the widespread adoption and development of machine 

learning strategies. One of the popular methods reported in 

the machine-learning literature is evolutionary algorithms. 

They are concentrated on recombining effective control 

policies by testing, leveraging the ones that produce the 

greatest outcomes, and looking into potential alternatives in 

the solution space (Goldberg & Holland, 1988; Koza, 1994).  
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Nomenclature 

IPDG Machine learning inspired intelligent 

passive device generator 
 RANS Reynolds-Averaged Navier-Stokes Equations 

t Knot parameters  PFC Passive Flow Control 

t’ Surface thickness    
 

 Flow control devices are broadly categorized into active 

and passive. Several active devices have been used in the 

literature, including movable underbody diffusers, steady 

blowing, steady suction, plasma actuators, and synthetic jets 

(Yu & Bingfu, 2021). However, active devices require 

external energy and electronics to function. Due to such 

difficulties, the technologies are not yet mature enough to 

handle the dynamics involved. On the other hand, passive 

devices provide comparable DR and are easy to implement 

without any extra energy and work as add-on devices which 

makes their operation simple. According to the literature, 

compared to the other passive devices, flaps provide better 

DR. For instance, Beaudoin and Aider (2008) obtained a DR 

of 25% from their modified Ahmed body with small 

rectangular flaps at the edges. Such a mechanism made the 

flow fully separate at the slant and reduced the C-vortex 

emanating from the side edges. Also, Fourrié et al. (2011) 

employed a curved deflector on a 25° slant Ahmed body and 

obtained a DR of 9% by modification of the C-vortex. 

Additionally, the study reported by Tian et al. (2017) 

examined the benefits of flaps used on 25° and 35° slant 

Ahmed bodies. They reported DR of 21.2% and 6% for the 

25° and 35° Ahmed models, respectively. Building on the 

works of Beaudoin and Aider (2008) and Fourrié et al. 

(2011), Hanfeng et al. (2016) implemented a flap at the side 

edges and the top edge of the slant surface over a 25° Ahmed 

body. Their investigation achieved 11.8% DR is much 

smaller than the previous works. 

 In the area of flow control, machine learning has been 

applied to active flow control (AFC) cases. For example, in 

order to control actuators using input gathered by sensors in 

the step flow problem, Gautier et al. (2015) used genetic 

programming. Also, Zhou et al. (2020) employed genetic 

programming to create a real-time artificial intelligence 

control system to maximize the mixing rate of turbulent jets 

by searching for an unsupervised learning technique that is 

close to the optimal control law. It is impossible to directly 

deduce the turbulence theory due to the complexity of the 

turbulence problem, however, the development of deep 

neural networks is making this possible by leveraging 

massive datasets. The anticipated outcomes were attained 

using a deep neural network to learn the link between wall 

shear stress and actuator control (Lee et al., 1997). The 

transonic buffet flow was the subject of numerically applied 

data-driven adaptive control using the radial basis function 

neural network, where the trailing edge flap served as the 

actuator and the lift served as the feedback signal (Ren et al., 

2020).  Their flow control method significantly reduced the 

buffeting load. For DR, Li et al. (2017) installed pulsed 

Coanda jets at the four trailing edges of the square-back 

Ahmed body. By optimizing the cost function based on the 

base pressure signal, linear genetic programming (LGP) was 

used to determine the appropriate control settings, producing 

a maximum DR of 24%. To reduce drag on a slanted Ahmed 

body at 35º, a recent numerical study found that constant 

blowing along all edges of the back window and the base 

resulted in a DR of 17% with inward blowing. The strength 

and angle of all the blowing jets were optimized with the use 

of a revolutionary explorative gradient method (EGM) (Li et 

al., 2022). This strategy alternates between the downhill 

simplex method (DSM) and the Latin hypercube sampling 

technique. The DSM algorithm, in contrast to the gradient-

based search algorithm, descends to a local minimum using 

just knowledge of its immediate surroundings (Nelder & 

Mead, 1965). This EGM method is used experimentally as 

well (Fan et al., 2020).  

 Within machine learning flow control methods, the 

model-free genetic algorithm has found special attention in 

the literature due to its non-gradient-based approach. They 

are a subset of evolutionary algorithms, which share a 

common workaround. A generation of individuals competes 

at a given task with a well-defined cost function and evolves 

based on rules, promoting successful strategies to the next 

generation (Banzhaf et al., 1998).  It is a potent regression 

technique that can, without physics knowledge, rediscover 

and combine flow control strategies that have been shown to 

be effective in autoregressive moving average eXogenous 

(Maceda et al., 2019, 2021). Tree-based genetic 

programming has been used to develop laws ranging in 

complexity from phasor control to jet mixing optimization 

(Zhou et al., 2020), unsteady minijet for control (Wu et al., 

2018), flow separation control (Gautier et al., 2015), vortex 

induced vibrations (Ren et al., 2019), and wake stabilization 

(Raibaudo et al., 2020). The machine learning flow control 

framework has undergone some necessary revisions, such as 

the adoption of an LGP algorithm, which is the path taken 

for the purposes of this investigation. 

 Furthermore, Shape optimization with genetic 

algorithms has been used in a number of aerodynamic-

related applications. Muñoz-Paniagua and García (2020) 

optimized the train nose using Bezier Curves with one 

objective function for DR, the genetic algorithm was 

combined with a neural network to speed up the process. 

Both Yu et al. (2013) and Yuan and Li (2017) used script 

files that contained more than 160 control points to generate 

the train nose, a few of those points were chosen to be design 

variables to be optimized for drag and load reduction and 

drag and noise reduction. The elitist Nondominated Sorting 

Genetic Algorithm II (NSGA-II) was used, which is 

different from the standard genetic algorithm. The NSGA-II 

is not based on probability and can handle multiple 
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objectives, which ensures that all the best solutions are kept. 

For example, Yu et al. (2013) used NSGA-II algorithm to 

optimize the high-speed train head, which reduced drag by 

4.2% and load reduction factor by 1.7%. Similarly, Yuan and 

Li (2017) employed an improved NSGA-II to optimize the 

aerodynamic drag and noise of the high-speed train. This 

improved NSGA-II algorithm takes a back propagation 

neural network model as the optimization evaluation system. 

Such an optimization method reduced the high-speed train 

drag by 6.7% and dipole aerodynamic noise by 8.3 dB. 

However, only a few researchers have employed genetic 

algorithms to optimize passive devices. Muyl et al. (2004) 

used a hybrid genetic algorithm to optimize the boat tail to 

reduce drag by varying the angle. Their results showed that 

the hybrid algorithm is more effective in both DR and 

computational time compared to the standard genetic 

algorithm. Similarly, Doyle et al. (2008) used a standard 

genetic algorithm to optimize rear flaps for trucks. Their 

simple two-dimensional (2D) study achieved 50% DR. 

However, three-dimensional (3D) bluff body flows were not 

considered.  

 Since the application of passive flow control (PFC)  

devices have demonstrated tremendous aerodynamic 

benefits in terms of drag and downforce, their importance 

cannot be ignored (Yu & Bingfu, 2021). For PFC, the 

methods developed so far are few, application-oriented and 

cannot be generalized. Furthermore, a method that can 

generate three-dimensional PFC devices for road vehicles 

based on the given design space and cost function using 

genetic algorithms is not reported in the open literature as far 

as the authors are aware, with the only exception being the 

work of Muyl et al. (2004). Moreover, future PFC devices 

should provide unique and non-intuitive shapes that could fit 

into the brand-differencing of road vehicle manufacturers 

and can easily align with future non-conventional vehicle 

shapes.  

 The use of machine learning on the Ahmed body has 

been recently highlighted in the literature review conducted 

by Yu and Bingfu (2021). Machine learning has found 

application in the Ahmed body using active flow control 

devices. Whereas the optimization of the passive flow 

control has not gained considerable attention. Therefore, the 

present investigation is well situated in the gap to develop 

PFC methods based on the genetic algorithm which 

represents machine learning. The developed method is called 

the intelligent passive device generator (IPDG). In this 

paper, the IPDG is demonstrated using the flap and diffuser 

as a passive device optimization. The following sections 

describe the IPDG method in detail. 

2. FORMULATION OF IPDG 

 The proposed IPDG consists of the NSGA-II since it can 

optimize multiple objective functions. Several previous 

works have shown its efficiency and applicability (Liu et al., 

2017). This method can generate complex surfaces, such as 

three-dimensional B-splines surfaces, based on the  

 
Fig 1. Intelligent passive device generator optimization 

flow chart. 
 

background work and by Deb et al. (2002). The NSGA-II 

algorithm selects solutions based on dominance (ranking) 

and crowding distance. For example, if an individual 

outperforms others in all the objective functions, it will be 

ranked higher. The front f m is assigned to individuals with 

the same rank, and the selection will prioritize individuals on 

better fronts. The crowded distance will take place in the 

case of ties (selection of some individuals in the same front). 

This process is called crowded tournament selection. The 

crowded distance calculation is expressed as: 

𝑑𝑖 = 𝑑𝑖 +
𝑓𝑖+1

 𝑚 − 𝑓𝑖−1
 𝑚

𝑓1
 𝑚 − 𝑓𝑁

 𝑚      (1) 

Where i, m, N represent the individual, the front in which 

that individual belongs, and the population size, 

respectively. 

2.1 Implementing the NSGA-II 

 Figure 1 shows the integration of NSGA-II, and B-spline 

with OpenFOAM in the optimization process, which is 

divided into two parts. The left column shows the algorithm 

sequence and the right column displays the evaluation of 

individuals within the population. The whole algorithm (left 

column) begins by generating the random population size. 

Next, an evaluation takes place to import the objective 

functions. For this demonstration, the objective functions are 

the drag and lift. When the optimization begins (right 

column), it generates a population such that every individual 

has a unique chromosome which is then translated into a B-

spline surface through a user-defined procedure in 

MATLAB. This surface is then exported into an STL file 

format for the computational fluid dynamics (CFD) analysis. 

After the evaluation, the action of the genetic operators, 

namely, crossover and mutation, will begin and generate a 

new population, which is also then subjected to the next 

round of evaluations, and the process continues until the 

convergence criteria are met. In all the scenarios considered  
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Fig. 2. NSGA-II benchmarking for 1st and 500th 

generations and comparison with the Pareto Optimum 

results. 

 

in this study, the method implemented runs for the same time 

span, starting with random genes. In this way, the number of 

generations achieved depends on the computational cost of 

an individual run. In the end, the method was able to reach 

15-18 generations with a population size of 20. It was 

observed that there are significant differences between the 

individuals in the 1st generation and those of the 15th -18th 

generations, showing the evolution from generation to 

generation. For better results, the method should be allowed 

to run for several generations. However, due to limited 

computational resources, it could only achieve 15-18 

generations in the present study. Nonetheless, the number of 

generations is sufficient to evaluate the performance of the 

method developed in this study. It should be noted that for a 

single run of the method, several unique geometries can be 

generated, up to 70 geometries. More importantly, each of 

the geometries is optimized based on the specified 

objectives, in this case, drag and lift reduction.  

2.2  Benchmarking 

 A benchmark function with a known solution was used 

to test the algorithm prior to the OpenFOAM CFD 

simulation. The function selected was the ZDT1 function; 

the benchmark equations are well-known and can be found 

in Yang (2013).  

 The NSGA-II parameters are as follows: the population 

size, mutation probabilities, and crossover were 20, 5%, and 

85%, respectively. These parameters were selected based on 

the optimization algorithm testing, where the probabilities 

are in the acceptable range, according to Hassanat et al. 

(2019). Figure 2 shows that the NSGA-II algorithm 

converged to the known solution after 500 generations with 

7 bits of precision and 3-dimensional variables ranging from 

zero to one. 

 
Fig. 3. The Ahmed body dimensions (mm), where α is 

the slant angle (Ahmed et al., 1984). 

 

3. GEOMETRY GENERATION 

 The flow around the Ahmed body with a slant angle of 

35o is well understood, and hence the new IPDG method is 

applied to control its aerodynamic drag and lift. Figure 3 

presents the dimensions of the Ahmed body (Ahmed et al., 

1984), where the length is 1044 mm, width is 389 mm, and 

height is 288 mm. 

 The flap and diffuser represented the PFC and were 

generated using the user-defined MATLAB B-Spline 

function. It is emphasized that the flap is a standard add-on 

device, whereas the diffuser in this study is a cut-out piece 

from the bottom of the rear end, and both are free to develop 

in the design space producing unique shapes. The B-spline 

surfaces of order k were generated from a linear combination 

of k-1 polynomials and continuity Ck−2 over the control 

points P (Patrikalakis & Maekawa, 2010). The knot basis 

curves were generated based on breakpoints, with the knot 

vector T = (t0, t1, …tm) using Eqs. (2-4), where t is a knot 

parameter for a linear combination between the points on the 

surface: 

𝑁𝑖,1(𝑡) = {1  𝑓𝑜𝑟 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1 0}  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (2) 

𝑁𝑖,𝑘(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑘−1 − 𝑡𝑖
𝑁𝑖,𝑘−1(𝑡)

+
𝑡𝑖+𝑘 − 𝑡

𝑡𝑖+𝑘 − 𝑡𝑖+1
𝑁𝑖+1,𝑘−1(𝑡) 

 (3) 

𝑟(𝑢, 𝑣) = ∑ ∑ 𝑝𝑖𝑗𝑁𝑖,𝑘(𝑢)𝑁𝑗,𝑙(𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

 (4) 

 A uniform knot vector (0, 1) was used to improve the 

accuracy and simplify the meshing of the STL files while 

generating the base curves 𝑁𝑖,𝑘(t). Repeating the breakpoints 

by k will ensure the curves end at the last point suggested by 

Patrikalakis and Maekawa (2010), which allows the control 

of the beginning and completion of the surface. The number 

of points in the knot vector is 2k+n+1,  
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(a) (b) 

 
(c) 

Fig. 4. Illustration of surface generation from control points for: (a) flap, (b) diffuser; control points are indicated in 

red crosses, and (c) Integration of the devices with unique surfaces to the Ahmed body; the assembly models were 

exported to OpenFOAM for CFD analysis. 

 

where k and n+1 denote the B-Spline order and number of 

control points, respectively. The genetic algorithm has been 

applied to the positions of the control points. Yet, with 

different sets of control points, it was possible to generate a 

variety of curves of order 3. 

 Furthermore, a gradient technique was used to extrude 

the surfaces and the orthogonal vector to calculate the partial 

differential at each point of the surfaces to generate the 

gradient, as shown in equation (5). Here G is the gradient of 

the function F(x,y), and t’ is the thickness of the surface. 

Equation (7) was used to calculate the first-order finite 

difference, which showed a minor error. Figure 4 displays 

the control points on the devices and the full assembly of the 

flap and diffuser over the Ahmed body. 

(𝑥𝑖2 , 𝑦𝑗2
, 𝐹𝑖𝑗2

) = (𝑥𝑖 , 𝑦𝑗 , 𝐹𝑖𝑗) + 𝐺𝑖𝑗 . 𝑡′/‖𝐺𝑖𝑗‖  (5) 

𝐺𝑖𝑗 = (𝐹𝑖𝑗 𝑥
, 𝐹𝑖𝑗𝑦

, −1)  (6) 

𝐹𝑖𝑗𝑥
=

𝐹𝑖𝑗 − 𝐹𝑖−1,𝑗

𝑥𝑖 − 𝑥𝑖−1

 (7) 

4. NUMERICAL MODEL 

4.1 Governing Equations and Boundary Conditions 

 The steady-state RANS equations for mass and 

momentum are: 

 Continuity 

∂

∂xi

(ρui̅̅ ̅̅ ) = 0   (8) 

 Momentum 

∂

∂xj

(ρuiuj̅̅ ̅̅ ̅̅ ̅) = −
∂p̅

∂xi

+
∂

∂xj

[μ (
∂ui̅

∂xj

+
∂uj̅

∂xi

−
2

3
∂ij

∂ul̅

∂xl

)]

+
∂

∂xj

(−ρui
′uj

′̅̅ ̅̅ ̅) 

(9) 

Here �̅� is the mean density, �̅� is the mean pressure, 𝜇 the 

molecular viscosity and −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  are the Reynolds stresses. 



R. Aranha et al. / JAFM, Vol. 16, No. 8, pp. 1500-1514, 2023.  

 

1505 

The equations are in the averaged form, and the closure 

terms are in equation (9) must be modelled. The term 

−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is the Reynolds tensor with nine components. This 

problem is known as the closure problem, and it is tackled 

by applying turbulence modelling. 

 Reynolds averaged Navier-Stokes (RANS) k-ω SST 

turbulence modeling was used to enhance the CFD 

simulations. Several studies have demonstrated that RANS 

with k-ω SST accurately captures the flow features around 

the 35º slant angle Ahmed body (Guilmineau, 2008). Since 

the 35° slanted Ahmed body model generates quasi axis-

symmetric flow behaviour, the prediction of the flow 

behaviours is accurate. The same line of argument was made 

by Tian et al. (2017). The turbulence model was selected 

with considerations of cost and time required for the number 

of unique assemblies to be evaluated. However, sub-grid 

scale modeling is recommended to predict the flow behavior 

better when there is additional complexity on the bluff body, 

which causes flow separations. 

 The problem with setting up a simulation in OpenFOAM 

is how to handle the boundaries and the schemes correctly. 

To properly set up the boundary conditions in the inlet, the 

ANSYS user manual (Ansys, 2018) was used to copy the 

inlet function and use it in OpenFoam. The boundary 

conditions are set up with Eqs. (10-12), where κ is the 

turbulent kinetic energy, ω is a specific rate of dissipation, 

U is the inlet velocity, I is turbulent intensity and 𝜈𝑟 is 

viscosity ratio; and the input values for I, 𝜈𝑟, and U are 

0.25%, 10, and 40 m/s, respectively, whereas 𝜈𝑡 is calculated 

from the solution. The model height-based Reynolds number 

is nearly 7.6 × 105. The input values are based on Lienhart et 

al. (2002) wind tunnel experiments, with which the CFD has 

been validated.  

𝜅 =
3

2
(𝑈 ⋅ 𝐼)2 (10) 

𝜔 =
𝜅

𝜈 ⋅ 𝜈𝑟

 (11) 

𝜈𝑟 =
𝜈𝑡

𝜈
 (12) 

4.2 Meshing 

 The model was meshed with the Snappy hex mesh, 

which is the standard mesh generation tool in OpenFOAM. 

It was then placed in an enclosure with dimensions of 3 m in 

length, 0.5 m in height, and 1 m in width. The quality of the 

mesh was controlled by non-orthogonality below 55 degrees 

such that it agrees well with the finite volume schemes 

restrictions, and y+ is less than 5 or between 30-200 to be 

acceptable for the wall functions. The maximum element 

sizes were set to be 0.05 m at free stream regions and 

0.00625 m at the refined region near the Ahmed body. The 

mesh was programmed to be automatic and include the 

geometries generated by the B-spline surfaces. The program  

 
Fig. 5. Mesh of the Ahmed body with 35o slant angle. 

 

also automatically processes the changes in geometries, 

which may include or exclude the new devices throughout 

the algorithm. Figure 5 shows the mesh of the symmetry-

model Ahmed body with 35o slant angle. 

 A grid independence study was performed to check the 

sensitivity of the mesh on the flow. Figure 6 shows that 

results are independent of grid size, starting at about 

1.0 × 107 elements, after which there was less than a 5% 

difference when compared with experimental results for an 

Ahmed body with a 35° slant angle (Lienhart et al., 2002). It 

was decided to use a grid size of around 1.5 × 107elements 

in order to have a fast and accurate simulation. 

4.3. Validation of CFD Model 

 The CFD model in this study was validated with open-

source experimental data and literature work (Ahmed et al., 

1984; Lienhart et al., 2002; Meile et al., 2012; Tian et al., 

2017). Figure 7 shows good agreements between the 

numerical results and experimental work reported by 

Lienhart et al. (2002) for the Ahmed Body with a 35o slant  

 

 

Fig. 6. Grid independence test and comparison of 

numerical and experimental errors. 
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Fig. 7. Comparison of experimental data and simulation 

results. (a) Streamwise mean velocity, (b) mean 

transverse velocity, and (c) turbulence kinetic energy 

profiles. 

 
Table 1 Experimental vs. present numerical study. 

Here, R. L. is the Recirculation length (the lift is in the 

Z direction) 

Coefficient 

 

Experimental 

(literature) 

Numerical 

(present study) 

Cd 
0.26 (Ahmed et al., 

1984) 
0.2629 

Cl 0.004 (Tian et al., 2017) 0.0082 

R.L 
1.2h (Siddiqui & 

Agelin-Chaab, 2021) 
1.22h 

 

angle on the streamwise and mean transverse velocities, as 

well as turbulence kinetic energy. Table 1 shows the 

comparison of the drag and lifts coefficients between the 

numerical results (present study) and experimental data from 

wind tunnels (Ahmed et al., 1984; Lienhart et al., 2002; 

Meile et al., 2012; Tian et al., 2017). The simulation model 

was set up with the same parameters as the wind tunnel test 

conditions.  

5. RESULT AND DISCUSSIONS 

5.1. Implementation of the Optimization Method 

 For the purpose of this paper, three PFC devices were 

examined, namely flap device only (flap-only), diffuser 

device only (diffuser-only), and combined flap and diffuser. 

All scenarios begin with random chromosomes/genetic 

information and run for the same time span. The 

computational cost of each individual member of the 

population limited the number of generations achieved. In 

this paper, a range of 15-18 generations with a population 

size of 20 was achieved. Figure 8 illustrates the progression 

of the drag and lift improvements in each generation. The 

lesser the drag and lift coefficients, the closer they are to 

optimal. From Fig. 8, the drag and lift reductions were 

observed as the generations progressed, and the latest 

generation improved significantly when compared to the 

first generation.  

5.2 Examples of the Unique Device Geometries 

 As mentioned before that the NSGA-II is designed to 

generate unique geometries which cannot be created using 

parametric study. The NSGA-II generates non-conventional 

and non-intuitive PFC devices that depend on design space 

and the objective functions. The example geometries 

presented in Fig. 9 are the ones that have survived the 

competition and evolved to the latest generation.  

5.3 Drag and Lift  

 All three cases were compared with the baseline model, 

which is the Ahmed body without the PFC devices. The 

unique geometries with the least drag in each optimization 

scenario were selected for detailed analysis of the CFD 

results to obtain physical insights. The drag and lift 

coefficients for the baseline and the optimized models are 

listed in Table 2. Their geometries are also displayed in Fig. 

10(a)-(d). 

5.4 Pressure Analysis  

 Figure 11 shows 2D images of pressure contours on the 

baseline and optimized models with the flap-only, diffuser-

only, and combined flap-diffuser to show the effects of the 

aerodynamic devices developed. For the flap-only model in 

Fig. 11(b), it can be observed that pressure at the rear 

increased when compared to the baseline model causing a 

DR. This is evident from a lower pressure region at the rear 

of the baseline case in Fig. 11(a). 

 

(a) 

(b) 

(c) 
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(a) (b) 

 
(c) 

Fig. 8. Solution progressions with 3 different generations for the optimization of (a) flap-only, (b) diffuser-only, and 

(c) combined flap-diffuser. 

 

 
Fig. 9. Examples of rows of (a) flap-only, (b) diffuser-only, and (c) combined flaps and diffusers on the Ahmed body 

with a 35o slant. 

 (a) 

 (b) 

 (c) 
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Table 2 Drag and lift coefficients of baseline and three optimized models. (Lift is in the Z direction) 

Coefficient Base model Flap-only Diffuser-only Combined 

Cd 0.2629 0.2464 0.2486 0.2435 

Cl 0.0082 -0.0430 -0.3961 -0.3686 

 

 

 

(a) (b) 

 
 

(c) (d) 

Fig. 10. Selected geometries for detailed analyses from the optimization cases of (a) flap-only, (b) diffuser-only, and 

(c)-(d) combined flap-diffuser in two orientations. 

 

 Also, the lower pressure region shifted further away from 

the Ahmed body with the flap-only case, justifying the drag 

reduction. In addition, a high pressure region is observed at 

the top of the flap, which implies there is downforce, 

whereas the baseline model is only evident with lift forces. 

The presence of an optimized flap-only resulted in 6.3% DR 

and 624.4% increase in downforce relative to the baseline 

case. For the diffuser-only model, the ground effect can be 

observed where there is a decrease in pressure under the 

vehicle body up to the neck of the diffuser, providing 

significant downforce. A similar behavior was not observed 

in both the baseline or flap-only cases. In addition, the 

diffuser allows pressure recovery at the rear of the Ahmed 

body, as evident by the pressure behind the vehicle when 

compared with the baseline model, resulting in DR. Overall, 

the selected diffuser-only model reduced the drag coefficient 

by 5.4% and increased downforce by 4930.5% relative to the 

baseline model. Since the baseline model has a lift 

coefficient close to zero, it explains the large improvement 

in the lift reduction. 

 By using the NSGA-II as an optimization method, it was 

possible to capture the benefits from both flap and diffuser 

devices at the same time. The combined flap-diffuser model 

showed improvements in both drag and lift reductions by 

7.4% and 4595.1%, respectively, relative to the baseline 

model. It was also observed that the flap geometry in the 

combined case is less aggressive than in the flap-only case. 

Since drag and lift are optimized simultaneously, the flap-

only case requires a concave shape on the flap to generate 

adequate downforces. However, downforce can be achieved 

with a diffuser in the combined case such that the flap results 

in a slightly convex shape to delay flow separation and 

promote pressure recovery and DR. Among the three 

selected optimized conditions, the combined flap-diffuser 

case resulted in the best pressure recovery, which was 

evident from the highest pressure behind the vehicle body, 

especially in the region under the flap; thus, the combined 

model had the lowest drag coefficient. Furthermore, the 

convex bumps at the end of the diffuser provided extra 

downforce at the tail of the vehicle that was not seen in the 

diffuser-only case. 
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Fig. 11. Pressure contours for (a) baseline model, (b) 

optimized flap-only model, (c) optimized diffuser-only 

model, and (d) combined optimized flap-diffuser model. 

 

5.5 Velocity Analysis 

 Velocity profiles around the Ahmed body were used to 

visualize the overall wake region. Figure 12 shows the 

velocity magnitude contours defined by Umagnitude = 

√𝑢2 + 𝑣2 + 𝑤2, where u, v, w are the mean velocity 

components in x, y, z directions, respectively. The velocity 

behaviors in all the cases are consistent with the physics of  

 

Fig. 12. Velocity profiles for (a) baseline model, (b) 

optimized flap-only model, (c) optimized diffuser-only 

model, and (d) combined optimized flap-diffuser model. 

 

the pressure contours shown previously. All the optimized 

flaps and diffusers were effective in creating more flow 

attachment to the Ahmed body, which can constrain the 

recirculation size and is beneficial to DR. 

 

 (a) 

 (d) 

 (c) 

 (b) 

 (a) 

 (b) 

 (c) 

 (d) 
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Fig. 13. Contour plots for vorticity ωx = 200 r/s on x-

component from left to right as: baseline, optimized 

flap-only, optimized diffuser-only, and combined 

optimized flap-diffuser models. 

 

 

Fig. 14. Contour plots for helicity H = 7500m/s2 from 

left to right: baseline, optimized flap-only, optimized 

diffuser-only, and combined optimized flap-diffuser 

models. 

 

 The recirculation size for the flap-only case was similar 

to that of the baseline model; therefore, the drag benefit was 

minimal among the other cases. Thus, the higher DR in the 

flap-only model can be associated with the increased vortex 

formation length even if the overall size of the recirculation 

region does not change. In contrast, the diffuser-only model 

shows a high drag (Table 2) by reducing the wake 

recirculation region since the reduction in the recirculation 

size is associated with the increased drag (Zdravkovich, 

1981).   

 The Ahmed body is a three-dimensional bluff body, the 

pressure drag is dominant, and the addition of these devices 

does not much affect the contribution of skin friction drag 

compared to the overall pressure drag. Yet an additional 

surface of the flap might contribute a little higher skin 

friction than the diffuser, but these are insignificant.   

 This result was consistent with Moghimi's diffuser with 

a similar shape reported by Moghimi and Rafee (2018), 

where the least drag model is the one with the largest angle 

and least flow separation. The situation was further 

improved in the combined flap-diffuser model, which 

resulted in the smallest and shortest wake region. Free 

stream velocities were recovered sooner than all the other 

cases behind the vehicle; therefore, this optimized case had 

the least drag among all the models. 

 In the baseline and flap-only models, the airflow slowed 

down as the air moved toward the rear of the flap. Therefore, 

there was more pressure on the upper region, which resulted 

in more downforce. When a diffuser was present, the airflow 

was accelerated, creating a lower-pressure region under the 

vehicle, thus inducing downforce. In the combined flap-

diffuser model, a secondary underbody flow acceleration 

was observed due to the convex bump shape at the end of the 

diffuser, which is believed to produce additional rear 

stability for the vehicle. The combined case was about 7% 

higher in the lift coefficient than the diffuser-only case, 

which was due to the slight flow acceleration on the top of 

the flap, causing pressure to reduce and explaining the 

underperformance of the combined case in the downforce 

optimization. 

5.6 Vortex Identification 

 Further analyses were performed with vortex 

identification methods to provide more insights. In this 

section, vortices were analyzed using vorticity, helicity, Q-

criterion, and spanwise (y-z) velocity magnitude. The 

primary factors contributing to drag increase in ground 

vehicles are the size of the recirculation zone and 

longitudinal vortices (Aider et al., 2010). Additionally, 

longitudinal forces also contribute to an increase in 

undesirable lift forces (Delassaux et al., 2021).Because both 

recirculation zone and longitudinal vortices have a direct 

influence on drag, reducing at least one of them can result in 

DR. 

 Vorticity and helicity of the baseline, flap-only, diffuser-

only, and combined flap-diffuser models are shown in Fig. 

13, and Fig. 14, respectively, and the longitudinal vortices 

were compared among the four cases. The vortices in the 

baseline model were the strongest compared to the optimized 

models. The top and bottom vortices in the baseline model 

merged together and then diverged as they moved away from 

the Ahmed body, which would enlarge and extend the wake 

region when they interact with the surrounding airflow. The 

presence of a flap device created small vortices on top of the 

flap and two additional vortices at the center height, but the 

two vortices at the bottom were reduced significantly, which 

contributed to DR, as shown in Fig. 13(a)-(b). In the diffuser-

only case, the C-pillar vortices and bottom vortices were 

separated, and the bottom vortices were also straightened 

out, as seen in Fig. 13(c) and resulting in a smaller wake 

region. In the combined flap-diffuser case, the vortices on 

top of the flap were more directional than in the flap-only 

case, and the bottom ones also tapered down from stronger 

to weaker vortices, which resulted in the smallest 

recirculation behind the vehicle. The nature of flow 

separation differs between the flap and the diffuser. It has 

been highlighted by  Siddiqui and Agelin-Chaab (2021) that 

the addition of a flap over the slant surface delayed the flow 

separation and increased the recirculation length in the wake. 

Similarly, in the current study, the addition of a flap shows a  
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Fig. 15. Contour plots for Q-criterion Q/Uref = 150 from 

left to right: baseline, optimized flap-only, optimized 

diffuser-only, and combined optimized flap-diffuser 

models, where Uref is the inlet velocity. 

 

delay in the flow separation depending on the flap shape and 

length. On the other hand, the diffuser is influenced by the 

flow separation at the rear edge of the underbody due to the 

formation of side edge vortices, as highlighted in Fig. 13 and 

Fig. 14. The flow separation impacts the strength of the 

vortices formed in the wake which is associated with the 

downforce. 

 The helical motion of the vortices in the baseline model 

extended until the end of the wake region, which was 

eliminated in the models with optimized devices. The 

longitudinal vortices underneath the body are known to 

affect not only drag but lift as well. It was observed that the 

downforce enhancement is due to the existence of the side 

edge vortices coming out of the underbody surface. The edge 

vortices are highly concentrated with a high axial speed core 

and high vorticity levels (George & Donis, 1983; Zhang et 

al., 2004). The turbulence levels at the core are low, and the 

vortices are stable, as shown in Fig. 14, It should be noted 

that even though longitudinal vortices are mostly 

undesirable, the presence of these vortices does not 

necessarily increase the drag as long as the flow is still 

attached to the vehicle, which was observed in the present 

study and others (George & Donis, 1983; Zhang et al., 2004). 

The optimized diffusers were also effective in eliminating 

the longitudinal vortices coming from the sides at the lower 

portion of the vehicle.  

 Figure 15 shows the contours of the Q-criterion vortex 

identification method. The contours are regions with high 

rotational movements that are larger than the stretching 

strain rates. It can be observed that the longitudinal vortices 

on the optimized flap-only model dissipated quicker and 

were shorter, while the vortices in the baseline model 

extended until the end of the wake region. In the optimized 

diffuser model, stronger vortices underneath the Ahmed 

body were formed, while the vortices at the upper region 

were weakened due to the presence of the diffuser. The 

combined flap-diffuser case suggested the best flow 

attachment among the four different conditions, allowing 

better pressure recovery. The upper longitudinal vortices 

were reduced compared to the flap-only case for more DR, 

and the bottom vortices were strengthened to extend to the 

end of the wake region for higher downforce generation.    

 

 The combined optimization strategy for the flap and 

diffuser was shown to be promising, as the model could 

capture the necessary features to reduce drag and lift while 

maintaining the balance between the benefits that the two 

devices brought as compared to flap-only or diffuser-only 

optimizations. The results of the combined case showed 

similar performances with respect to the models with 

individual devices. The combined optimization had to take 

care of 30-dimensional variables, whereas the individual 

optimization only consisted of less than 18 design variables. 

Therefore, it is believed that the combined case requires 

more computational time for the best results. 

6. CONCLUSION 

 This paper proposed an intelligent passive device 

generator (IPDG) for the generation of unconventional and 

unique shapes of passive flow control (PFC) devices. The 

IPDG involves the integration of genetic algorithms, B-

spline surfaces, and CFD. The genetic algorithm employed 

is elitist, so it passes on the best traits to the later generations. 

To demonstrate the method, PFC devices, such as rear flaps 

and underbody diffusers, were designed and optimized for 

road vehicles. The optimization ran up to 15-18 generations 

with a population size of 20. Three optimization scenarios 

were considered, including flap-only, diffuser-only, and 

combined flap-diffuser, using the generic Ahmed body with 

a 35o slant angle. The proposed method was effective in 

finding unique geometries that reduced drag and lift 

simultaneously. The following conclusions can be drawn 

from the study:  

● The proposed IPDG demonstrated the ability to 

generate unique and non-intuitive device 

geometries, which are difficult for a human 

designer to conceptualize. The method was 

successful in optimizing multiple objectives 

simultaneously, which eliminated the need for 

parametric studies that could be laborious. 

● The flap reduced drag by promoting flow 

attachment and also produced downforce. The 

flap-only case had a concave shape such that 

airflow was slowed down and pressure was 

increased on top of the flap. It successfully 

reduced drag by 6.3% and increased downforce by 

624.4% compared with the baseline model 

without devices. The presence of the flap also 

affected the recirculation zone such that there was 

more attached airflow and weaker longitudinal  

● The optimized diffuser-only case was effective in 

creating a lower-pressure region underneath the 

vehicle body by accelerating the airflow and 

increasing downforce. Higher pressure recovery 

was achieved when compared to the baseline 
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model without devices. The optimized diffuser-

only case resulted in a DR of 5.4% and an increase 

in downforce by 4930% compared with the 

baseline model without devices. 

● The combined flap-diffuser case has a flare at the 

end of the flap that weakened the vortices, 

whereas the diffuser has convex bumps at its end 

that increased the pressure to provide additional 

downforce at the base of the vehicle. The 

combined optimized flap-diffuser case reduced 

drag by 7.4% and improved downforce by 

4595.1% compared with the baseline model 

without devices. However, the downforce has 

decreased relative to the diffuser-only case, which 

demonstrates that more devices do not necessarily 

produce the desired effect.      

 The proposed IPDG has great potential for the 

optimization of add-on aerodynamic devices for road 

vehicles. It also has the potential to be a universal PFC 

device generator that can be applied to any vehicle to 

improve aerodynamic performance. However, the downside 

of the technique is that it is computationally expensive. In 

future, further improvements will be made to the technique 

and applied to a more realistic vehicle, such as the DrivAer 

model.  
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