Numerical Investigation on Separation Efficiency of a Novel Hybrid Engine Air-Particle Separator

Document Type : Regular Article

Authors

1 Laboratory of Propulsion and Reactive Systems, Ecole Militaire Polytechnique, BP17 Bordj-el-Bahri, 16046 Algiers, Algeria

2 Ecole Supérieure des Techniques de l’aéronautique, Dar El-Beida, Algiers, Algeria

3 Laboratory of Fluid Mechanics, Ecole Militaire Polytechnique, BP17 Bordj-el-Bahri, 16046 Algiers, Algeria

4 Royal Military Academy RMA, Brussels, Belgium

Abstract

This paper proposes a novel design for a hybrid engine air-particle separator filter (HEAPS) that combines the vortex tube separator (VTS) with the inertial particle separator (IPS) to enhance separation efficiency. Helicopters often operate in harsh environments, such as deserts, and landing on unprepared runways poses a severe risk to turboshaft engines due to the ingestion of dust and sand. This can result in significant damage to the engine's rotating components, impacting its life, reliability, and performance. To protect the engine from erosion and damage, an engine air particle separator system (EAPS) is installed in the engine inlet. In this study, a comparative numerical simulation was conducted between the hybrid filter and the VTS using the commercial software ANSYS Fluent. The Reynolds-averaged Navier–Stokes equations (RANS) were used to simulate incompressible turbulent flow, and the trajectory of particles was tracked using the Discrete Phase Model (DPM). Particle trajectories and separation efficiency were analyzed for different particle sizes, inlet velocities, and bypass mass flow ratios between the scavenge channel and the core engine channel. The results show that the hybrid design provides excellent separation efficiency, with a recovery efficiency of over 97%.

Keywords

Main Subjects


Alqallaf, J., & Teixeira, J. A. (2022). Numerical study of effects of solid particle erosion on compressor and engine performance. Results in Engineering, 15, 100462. https://doi.org/10.1016/j.rineng.2022.100462##
Barone, D., Loth, E., & Snyder, P. (2017). Influence of particle size on inertial particle separator efficiency. Powder Technology, 318, 177-185. https://doi.org/10.1016/j.powtec.2017.04.044##
Bojdo, N. M. (2012). Rotorcraft engine air particle separation. The University of Manchester (United Kingdom).##
Bojdo, N., & Filippone, A. (2012). A comparative study of helicopter engine air particle separation technologies.##
Bojdo, N., & Filippone, A. (2017, September). Conceptual and preliminary design of a hybrid dust filter for helicopter engines. Conference: European Rotorcraft Forum At: Milan, Italy.##
Connolly, B. J., Loth, E., & Smith, C. F. (2023). Efficiency of inertial particle separators. Powder Technology, 413, 118004. https://doi.org/10.1016/j.powtec.2022.118004##
Cozier, A. D., Harned, K. E., Riley, M. A., Raabe, B. H., Sommers, A. D., & Pierson, H. A. (2015, November). Additive manufacturing in the design of an engine air particle separator. ASME International Mechanical Engineering Congress and Exposition,  American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2015-51592##
Crowe, C. T., Sommerfeld, M., & Tsuji, Y. (1998). Multiphase flows with particles and droplets, CRC Press, pp. 57–88.##
Daldal, A. B. (2023). Investigation of inertial particle separator from a broader perspective. [Master's thesis, Middle East Technical University].##
Dziubak, T. (2020). Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field. Bulletin of the Polish Academy of Sciences: Technical Sciences, 503-516. https://doi.org/10.24425/bpasts.2020.133385##
Dziubak, T., Bąkała, L., Karczewski, M., & Tomaszewski, M. (2020). Numerical research on vortex tube separator for special vehicle engine inlet air filter. Separation and Purification Technology, 237, 116463. https://doi.org/10.1016/j.seppur.2019.116463##
Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52(4), 309-329. https://doi.org/10.1007/BF00936835##
Filippone, A., & Bojdo, N. (2010). Turboshaft engine air particle separation. Progress in Aerospace Sciences, 46(5-6), 224-245. https://doi.org/10.1016/j.paerosci.2010.02.001##
Fluent, A. N. S. Y. S. (2019). Ansys fluent theory guide 2019R3.##
Ghenaiet, A., & Tan, S. C. (2004, January). Numerical study of an inlet particle separator. In Turbo Expo: Power for Land, Sea, and Air (Vol. 41677, pp. 269-281). https://doi.org/10.1115/GT2004-54168##
Gopalakrishnan, B. (2019). Numerical analysis of multiphase flow through axial vortex tube cyclone separators. E3S Web of Conferences, EDP Sciences.##
Hamed, A., Tabakoff, W. C., & Wenglarz, R. V. (2006). Erosion and deposition in turbomachinery. Journal of Propulsion and Power, 22(2), 350-360. https://doi.org/10.2514/1.18462##
Hobbs, J. R. (1983). U.S. Patent No. 4,389,227. Washington, DC: U.S. Patent and Trademark Office.##
Jennings, S. G. (1988). The mean free path in air. Journal of Aerosol Science, 19(2), 159-166. https://doi.org/10.1016##/0021-8502(88)90219-4##
Milluzzo, J., & Leishman, J. G. (2010). Assessment of rotorcraft brownout severity in terms of rotor design parameters. Journal of the American Helicopter Society, 55(3), 32009-32009. https://doi.org/10.4050/JAHS.55.032009##
Prinsloo, W. J., De Villiers, P., & Van Dijken, M. C. (1991). U.S. Patent No. 4,985,058. Washington, DC: U.S. Patent and Trademark office.##
Saberi, s. (2014). numerical model and analysis on performance of a straight-through swirl tube cyclone (Inertial Gas-Solid Separator). [Doctoral dissertation, Concordia University].##
Song, X., Xu, Z., Li, G., Pang, Z., & Zhu, Z. (2017). A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particle in Newtonian fluid. Powder Technology, 321, 242-250. https://doi.org/10.1016/j.powtec.2017.08.017##
Stallard, P. (1997). Helicopter engine protection. Perfusion, 12(4), 263-267. https://doi.org/10.1177/026765919701200410##
Sommerfeld, M. (2017). Numerical methods for dispersed multiphase flows. Particles in flows, 327-396. https://doi.org/10.1007/978-3-319-60282-0_6##
Tabakoff, W., & Hamed, A. (1984, October). Installed engine performance in dust-laden atmosphere. Aircraft Design Systems and Operations Meeting.##
Vallier, A. (2009). Tutorial icolagrangianfoam/solidparticle. Chalmers University of Technology, Goteborg, Sweden. Peer reviewed tutorial, Hakan Nilsson, CFD with OpenSource Software.##
Van der Walt, J. P., & Nurick, A. (1995a). Erosion of dust-filtered helicopter turbine engines part I: basic theoretical considerations. Journal of Aircraft, 32(1), 106-111. https://doi.org/10.2514/3.56919##
Van der Walt, J. P., & Nurick, A. (1995b). Erosion of dust-filtered helicopter turbine engines part II: erosion reduction. Journal of Aircraft, 32(1), 112-117. https://doi.org/10.2514/3.46690##
Zhou, L., Wang, Z., & Shi, J. (2019). Optimization design of the integral inertial particle separator based on response surface method. Journal of Applied Fluid Mechanics, 13(1), 133-145. https://doi.org/10.29252/jafm.13.01.30186##