Aboudaoud, S., El Kourdi, S., Abderafi, S. & Abbassi, M. A. (2022). Municipal solid waste generation from morocco and tunisia, and their possible energetic valorization. 2021 9th International Renewable and Sustainable Energy Conference (IRSEC).##
Bhusare, V. H., Dhiman, M. K., Kalaga, D. V., Roy, S., & Joshi, J. B. (2017). CFD simulations of a bubble column with and without internals by using OpenFOAM.
Chemical Engineering Journal, 317, 157–174.
https://doi.org/10.1016/j.cej.2017.01.128##
Bounaceur, A. (2008).
Interaction lit fluidisé de particules solides-rayonnement solaire concentré pour la mise au point d’un procédé de chauffage de gaz à plus de 1000 K. Phd thesis, École Nationale Supérieure des Mines de Paris, France.
https://pastel.archives-ouvertes.fr/tel-00409692##
Cardoso, J., Silva, V., Eusébio, D., Brito, P., & Tarelho, L. (2018). Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor: A numerical study with experimental validation.
Energy Conversion and Management, 156, 53–67.
https://doi.org/10.1016/j.enconman.2017.11.005##
Chauhan, V., Chavan, P. D., Datta, S., Saha, S., Gajanan, S., & Dhaigu, N. D. (2022). A transient Eulerian-Eulerian simulation of bubbling regime hydrodynamics of coal ash particles in fluidized bed using different drag models.
Advanced Powder Technology, 33(1), p. 103385.
https://doi.org/10.1016/j.apt.2021.12.004##
Chen, M., Liu, M., & Tang, Y. (2019). Comparison of Euler-Euler and Euler-Lagrange Approaches for Simulating Gas-Solid Flows in a Multiple-Spouted Bed.
International Journal of Chemical Reactor Engineering, 17(7).
https://doi.org/10.1515/ijcre-2018-0254##
Di Renzo, A., Scala, F., & Heinrich, S. (2021). Recent Advances in Fluidized Bed Hydrodynamics and Transport Phenomena—Progress and Understanding.
Processes, 9, 639.
https://doi.org/10.3390/pr9040639##
El Kourdi, S., Aboudaoud, S., Abderafi, S., & Cheddadi, A. (2022). Potential Assessment of Combustible Municipal Wastes in Morocco and their Ability to Produce Bio-Oil by Pyrolysis.
Materials Science Forum, 1073, 149–154. Trans Tech Publications Ltd.
https://doi.org/10.4028/p-2gg5xu##
El Kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A., & Ammar, A. M. (2023). Pyrolysis technology choice to produce bio-oil, from municipal solid waste, using multi-criteria decision-making methods.
Waste and Biomass Valorization, 1-18.
https://doi.org/10.1007/s12649-023-02076-w##
Gidaspow, D. (1994b). Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press.##
Herzog, N., Schreiber, M., Egbers, C., & Krautz, H. J. (2012). A comparative study of different CFD-codes for numerical simulation of gas–solid fluidized bed hydrodynamics.
Computers & Chemical Engineering, 39, 41–46.
https://doi.org/10.1016/j.compchemeng.2011.12.002##
Johnson, P. C., & Jackson, R. (1987). Frictional–collisional constitutive relations for granular materials, with application to plane shearing.
Journal of Fluid Mechanics, 176, 67.
https://doi.org/10.1017/S0022112087000570##
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field.
Journal of Fluid Mechanics, 140, 223–256.
https://doi.org/10.1017/S0022112084000586##
Ngo, S. I., Lim, Y. I., Song, B. H., Lee, U. D., Yang, C. W., Choi, Y. T., & Song, J. H. (2013). Hydrodynamics of cold-rig biomass gasifier using semi-dual fluidized-bed.
Powder Technology, 234, 97–106.
https://doi.org/10.1016/j.powtec.2012.09.022##
Philippsen, C. G., Vilela, A. C. F., & Zen, L. D. (2015). Fluidized bed modeling applied to the analysis of processes: review and state of the art.
Journal of Materials Research and Technology, 4, 208–216.
https://doi.org/10.1016/j.jmrt.2014.10.018##
Solli, K. A., & Agu, C. (2017, September 25-27). Evaluation of Drag Models for CFD Simulation of Fluidized Bed Biomass Gasification. The 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland. pp. 97-107.
https://doi.org/10.3384/ecp1713897##
Stanly, R., Shoev, G., & Kokhanchik, A. (2017).
Numerical simulation of gas-solid flows in fluidized bed with TFM model. AIP Conference Proceedings, 1893(1).
https://doi.org/10.1063/1.5007498##
Syamlal, M., & Thomas, J. O. (1989). Computer simulation of bubbles in a fluidized bed. In
Fluidization and Fluid Particle Systems: Fundamentals and Applications (Ed.) L. S. Fan, AIChE Symposium Series No. 270, 85, 22-31.
https://www.researchgate.net/publication/279892631##
Syamlal, M., Rogers, W., & O’Brien, T. J. (1993).
MFIX documentation: Volume 1, theory guide. National Technical Information Service, Springfield, VA.
https://doi.org/10.2172/10145548##
Ullah, A., Hong, K., Gao, Y., Gungor, A., & Zaman, M. (2019). An overview of Eulerian CFD modeling and simulation of non-spherical biomass particles.
Renewable Energy, 141, 1054–1066.
https://doi.org/10.1016/j.renene.2019.04.074##
Venier, C. M., Reyes Urrutia, A., Capossio, J. P., Baeyens J., & Mazza, G. (2019). Comparing ANSYS Fluent
® and OpenFOAM
® simulations of Geldart A, B and D bubbling fluidized bed hydrodynamics.
International Journal of Numerical Methods for Heat & Fluid Flow, 30, 93–118.
https://doi.org/10.1108/HFF-04-2019-0298##
Yates, J. G., & Lettieri, P. (2016).
Fluidized-Bed Reactors: Processes and Operating Conditions. Particle Technology Series, Cham: Springer International Publishing
. https://doi.org/10.1007/978-3-319-39593-7##