Aakenes, F. (2012). Frictional pressure-drop models for steady-state and transient two-phase flow of carbon dioxide. [Master’s thesis, Norwegian University of Science and Technology].##
Aidoun, Z., Ameur, K., Falsafioon, M., & Badache, M. (2019a). Current advances in ejector modeling, experimentation and applications for refrigeration and heat pumps. Part 2: Two-phase ejectors.
Inventions, 4, 1–54.
https://doi.org/10.3390/inventions4010016##
Aidoun, Z., Ameur, K., Falsafioon, M., & Badache, M. (2019b). Current advances in ejector modeling, experimentation and applications for refrigeration and heat pumps. Part 1: Single-phase ejectors.
Inventions, 4, 1–73.
https://doi.org/10.3390/inventions4010016##
Akagi, S., Dang, C., & Hihara, E. (2008). Characteristics of pressure recovery in two-phase ejector applied to carbon dioxide heat pump cycle. 9th International IEA Heat Pump Conference, Zürich, Switzerland.##
Akagi, S., Wang, J., & Hihara, E., 2004. Characteristics of two-phase ejector with carbon dioxide. 41st National Heat Transfer Symposium of Japan.##
Banasiak, K., Hafner, A., & Andresen, T. (2012). Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump.
International Journal of Refrigeration 35, 1617–1625.
https://doi.org/10.1016/j.ijrefrig.2012.04.012##
Banasiak, K., Hafner, A., Kriezi, E. E., Madsen, K. B., Birkelund, M., Fredslund, K., & Olsson, R. (2015). Development and performance mapping of a multi-ejector expansion work recovery pack for R744 vapour compression units.
International Journal of Refrigeration 57, 265–276.
https://doi.org/10.1016/j.ijrefrig.2015.05.016##
Banasiak, K., Palacz, M., Hafner, A., Bulinski, Z., Smołka, J., Nowak, A. J., & Fic, A. (2014). A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems : An irreversibility analysis.
International Journal of Refrigeration 40, 328–337.
https://doi.org/10.1016/j.ijrefrig.2013.12.002##
Bouziane, A., Bensafi, A., & Haberschill, P. (2012). Modeling and experimental study of an ejector for a transcritical co2 refrigeration system. 10 Th IIR Gustav Lorentzen Conference on Natural Refrigerants. Delft, The Netherlands.##
Cardemil, J., & Colle, S. 2011. Novel cascade ejector cycle using natural refrigerants. 23rd IIR International Congress of Refrigeration. Prague, Czech Republic.##
Elbel, S. (2011). Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications.
International Journal of Refrigeration 34, 1545–1561.
https://doi.org/10.1016/j.ijrefrig.2010.11.011##
Elbel, S., & Hrnjak, P. (2008). Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation.
International Journal of Refrigeration 31, 411–422.
https://doi.org/10.1016/j.ijrefrig.2007.07.013##
Environment and Climate Change Canada (2022) Canadian Environmental Sustainability Indicators: Greenhouse gas emissions. Gatineau, Canada.##
Giacomelli, F., Mazzelli, F., Banasiak, K., Hafner, A., & Milazzo, A. (2019). Experimental and computational analysis of a R744 flashing ejector.
International Journal of Refrigeration 107, 326–343.
https://doi.org/10.1016/j.ijrefrig.2019.08.007##
Henry, R. E., & Fauske, H. K. (1971). The two-phase critical flow of one-component mixtures in nozzles, orifice, and short tubes.
Journal of Heat Transfer, 93, 179–187.
https://doi.org/10.1115/1.3449782##
Huff, H. J., & Radermacher, R. (2003). CO2 compressor-expander analysis. ARTI-21CR/611-10060-01. Arlington.##
Kornhauser, A. A. (1990). The Use of an ejector as a refrigerant expander. International Refrigeration and Air Conditioning Conference. Purdue University. Paper 82.##
Lee, J. S., Kim, M. S. Kim, & M. S. Kim (2011). Experimental study on the improvement of CO2 air conditioning system performance using an ejector.
International Journal of Refrigeration 34, 1614–1625.
https://doi.org/10.1016/j.ijrefrig.2010.07.025##
Li, D., & Groll, E. A. (2006). Analysis of an ejector expansion device in a transcritical CO2 air conditioning system. 7th IIR Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway.##
Mastrowski, M., Smolka, J., Hafner, A., Haida, M., Palacz, M., & Banasiak, K. (2019). Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems.
Energy, 173, 586–597.
https://doi.org/10.1016/j.energy.2019.02.097##
Minetto, S., Brignoli, R., Banasiak, K., Hafner, A., & Tesser, F. (2012). Experimental analysis of a r744 heat pump equipped with an ejector. The 10 Th IIR Gustav Lorentzen Conference on Natural Refrigerants. Delft, The Netherlands.##
Nakagawa, M., Marasigan, A. R., Matsukawa, T., & Kurashina, A. (2011). Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger.
International Journal of Refrigeration 34, 1604–1613.
https://doi.org/10.1016/j.ijrefrig.2010.07.021##
NIST (2010). NIST thermodynamics and transport properties of refrigerants and refrigerant mixtures-REFPROP (Version 9.0).##
Palacz, M., Haida, M., Smolka, J., Nowak, A. J., Banasiak, K., & Hafner, A. (2017). HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems.
Applied Thermal Engineering 115, 160–169.
https://doi.org/10.1016/j.applthermaleng.2016.12.122##
Ringstad, K. E., Allouche, Y., Gullo, P., Ervik, Å., Banasiak, K., & Hafner, A. (2020). A detailed review on CO2 two-phase ejector flow modeling.
Thermal Science and Engineering Progress 20.
https://doi.org/10.1016/j.tsep.2020.100647##
Rony, R. U., Yang, H., Krishnan, S., & Song, J. (2019). Recent advances in transcritical CO2 (R744) heat pump system: A review.
Energies, 12, 1–35.
https://doi.org/10.3390/en12030457##
Saeed, M. Z., Hafner, A., Thatte, A., & Gabrielii, C. H. (2022, June 13-15). Simultaneous implementation of rotary pressure exchanger and ejectors for CO2 refrigeration system. 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants. Trondheim, Norway.##
Sarkar, J. (2010). Review on cycle modifications of transcritical CO2 refrigeration and heat pump systems. Journal of Advanced Research in Mechanical Engineering 1, 22–29.##
Smolka, J., Bulinski, Z., Fic, A., Nowak, A. J., Banasiak, K., & Hafner, A. (2013). A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach.
Applied Mathematical Modelling 37(3), 1208–1224.
https://doi.org/10.1016/j.apm.2012.03.044##
Takleh, H. R., & Zare, V. (2019). Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization.
International Journal of Refrigeration 101, 56–70.
https://doi.org/10.1016/j.ijrefrig.2019.02.031##
Taslimi Taleghani, S., Sorin, M., & Poncet, S. (2018). Modeling of two-phase transcritical CO2 ejectors for on-design and off-design conditions.
International Journal of Refrigeration 87, 91–105.
https://doi.org/10.1016/j.ijrefrig.2017.10.025##
Zha, S., Jakobsen, A., Hafner, A., & Neksa, P. (2007). Design and parametric investigation on ejector for R-744 transcritical system. International Congress of Refrigeration 2007. Beijing.##
Zhu, Y., Li, C., Zhang, F., & Jiang, P. X. (2017). Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system.
Energy Conversion and Management 151, 98–106.
https://doi.org/10.1016/j.enconman.2017.08.061##