Abdollahi, A., (2019). Effect of rheopexy on the naturatural frequency of spherical bubbles subjected to acoustic pressure field. [Masters thesis, Univeristy of Tehran].##
Ahmadpour, A., Amini-Kafiabad, H., Samadi, J., & Sadeghy, K. (2011). The rise of second harmonics in forced oscillation of gas bubbles in thixotropic fluids. Nihon Reoroji Gakkaishi, 39(3), 113-117. https://doi.org/10.1678/rheology.39.113##
Allen, J. S., & Roy, R. A. (2000). Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. The Journal of the Acoustical Society of America, 107(6), 3167-3178. https://doi.org/10.1121/1.429344##
Andonova, V., & Sekhar, G. C. (2016). Rise time Calculations of a single air bubble under the influence of gravity in a pool of water.
Journal of Applied Science and Engineering Methodologies, 2(3), 426-434.
http://jasem.in/2016/23426434.html##
Arefmanesh, A., Arani, M. M., & Arani, A. A. (2022). Dynamics of a bubble in a power-law fluid confined within an elastic Solid, European Journal of Mechanics / B Fluids, 94, 29–36. https://doi.org/10.1016/j.euromechflu.2022.02.002##
Battistella, A., Van-Schijndel, S., Baltussen, M. W., Roghair, I., & Van-Sint-Annaland, M. (2017). Front-tracking simulations of bubbles in non-newtonian fluids. 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries (CFD 2017), (pp. 469-478). SINTEF Academic Press. https://research.tue.nl/en/publications/front-tracking-simulations-of-bubbles-in-non-newtonian-fluids##
Canchi, S., Kelly, K., Hong, Y., King, M. A., Subhash, G., & Sarntinoranont, M. (2017). Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue. Journal of the Mechanical Behavior of Biomedical Materials, 74, 261-273. http://dx.doi.org/10.1016/j.jmbbm.2017.06.018##
Chakibi, H., Hénaut, I., Salonen, A., Langevin, D., & Argillier, J. F. (2018). Role of bubble–drop interactions and salt addition in flotation performance.
Energy & Fuels, 32(3), 4049-4056.
https://doi.org/10.1021/acs.energyfuels.7b04053##
Dai, B., Liu, C., Liu, S., Wang, D., Wang, Q., Zou, T., & Zhou, X. (2023). Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery.
Applied Thermal Engineering, 219, Part B, 119570.
https://doi.org/10.1016/j.applthermaleng.2022.119570##
Jaluria, Y. (1988). Computer methods for engineering, Allyn and Baycon Inc., Boston. https://www.amazon.com/Computer-Methods-Engineering-Allyn-Bacon/dp/0205106366##
Kafiabad, H. A., & Sadeghy, K. (2010). Chaotic behavior of a single spherical gas bubble surrounded by a Giesekus liquid: A numerical study.
Journal of Non-Newtonian Fluid Mechanics, 165(13-14), 800-811.
http://dx.doi.org/10.1016/j.jnnfm.2010.04.010##
Karapetsas, G., Photeinos, D., Dimakopoulos, Y., & Tsamopoulos, J. (2019). Dynamics and motion of a gas bubble in a viscoplastic medium under acoustic.
Journal of Fluid Mechanics, 865, 381-413.
https://doi.org/10.1017/jfm.2019.49##
Kelly, W. J. (2008). Using computational fluid dynamics to characterize and improve bioreactor performance.
Biotechnology and applied biochemistry, 49(4), 225-238.
https://doi.org/10.1042/ba20070177##
Liu, H. L., Fan, C. H., Ting, C. Y., & Yeh, C. K. (2014). Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview.
Theranostics, 4(4), 432.
https://doi.org/10.7150%2Fthno.8074##
McDannold, N., Vykhodtseva, N., & Hynynen, K. (2006). Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity.
Physics in Medicine & Biology, 51(4), 793.
https://doi.org/10.1088/0031-9155/51/4/003##
Moseley, K., Fairweather, M. & Harbottle, D. (2019). Settling dynamics of two identical vertically aligned spheres in a thixotropic fluid.
Journal of Non-Newtonian Fluid Mechanics, 271, 104146.
https://doi.org/10.1016/j.jnnfm.2019.104146##
Mukundakrishnan, K., Ayyaswamy, P. S. & Eckmann, D. M. (2009). Bubble motion in a blood vessel: shear stress induced endothelial cell injury.
https://doi.org/10.1115/1.3153310##
Perera, R., Nittayacharn, P., Cooley, M., Jung, O., & Exner, A. A. (2018). Ultrasound contrast agents and delivery systems in cancer detection and therapy.
Advances in Cancer Research, 139, 57-84.
https://doi.org/10.1016/bs.acr.2018.04.002##
Rayleigh, L. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34 (200), 94–98. https://doi.org/10.1080/14786440808635681##
Segers, T., Kruizinga, P., Kok, M. P., Lajoinie, G., De Jong, N., & Versluis, M. (2018). Monodisperse versus polydisperse ultrasound contrast agents: Non-linear response, sensitivity, and deep tissue imaging potential.
Ultrasound in Medicine & Biology, 44(7), 1482-1492.
https://doi.org/10.1016/j.ultrasmedbio.2018.03.019##
Sheeran, P. S., Yoo, K., Williams, R., Yin, M., Foster, F. S., & Burns, P. N. (2017). More than bubbles: creating phase-shift droplets from commercially available ultrasound contrast agents
. Ultrasound in Medicine & Biology, 43(2), 531-540.
https://doi.org/10.1016/j.ultrasmedbio.2016.09.003##
Shpak, O., Verweij, M., Jong, N. D., & Versluis, M. (2016). Droplets, bubbles and ultrasound interactions.
Therapeutic Ultrasound, 880, 157-174.
https://doi.org/10.1007/978-3-319-22536-4_9##
Sokolov, I. V., Didenkulov, I. N., Selivanovsky, D. A., & Semenov, V. E. (2000
). Bubble Shape Instability in a Strong Acoustic Field. AIP Conference Proceedings, 524, 371.
https://doi.org/10.1063/1.1309244##
Wang, Z., Ma, J., Gao, H., Stuedlein, A. W., He, J., & Wang, B. (2020). Unified thixotropic fluid model for soil liquefaction.
Géotechnique, 70(10), 849-862.
http://dx.doi.org/10.1680/jgeot.17.p.300##
Warnez, M. T., & Johnsen, E. (2015). Numerical modeling of bubble dynamics in viscoelastic media with relaxation.
Physics of Fluids, 27(6), 063103.
https://doi.org/10.1063/1.4922598##