Dewanji, D., Rao, A. G., Pourquie, M. J. B. M., & Van Buijtenen, J. P. (2012). Investigation of flow characteristics in lean direct injection combustors.
Journal of Propulsion and Power, 28(1), 181-196.
https://doi.org/10.2514/1.B34264##
Fan, X. J., Xu, G., Liu, C., Wang, J. , & Zhang, C. (2020) Experimental investigations of the flow field structure and interactions between sectors of a double-swirl low-emission combustor.
Journal of Thermal Science, 29(11), 43–51.
https://doi.org/10.1007/s11630-020-1228-z##
Foust, M., Thomsen, D., Stickles, R., Cooper, C., & Dodds, W. (2012). Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines. In 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p. 936).
https://doi.org/10.2514/6.2012-936##
Fristrom, R. M and Westenberg, A. A. (1965). Flam Structure, MeGraw-Hill.##
Gejji, R. M., Huang, C., Yoon, C., & Anderson, W. (2014). A Parametric Study of Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor: Part II: Experimental Investigation. In
52nd Aerospace Sciences Meeting (p. 0133).
https://doi.org/10.2514/6.2014-0133##
Gugulothu, S. K. & Nutakki, P. K. (2019). Dynamic fluid flow characteristics in the hydrogen-fuelled scramjet combustor with transverse fuel injection.
Case Studies in Thermal Engineering, 14, 100448.
https://doi.org/10.1016/j.csite.2019.100448##
Hatem, F. A., Alsaegh, A. S., Al-Faham, M., Valera-Medina, A., Chong, C. T., & Hassoni, S. M. (2018). Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners.
Applied energy, 230, 946-959.
https://doi.org/10.1016/j.apenergy.2018.09.055##
Heath, C. M. (2014). Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion.
Journal of Propulsion and Power, 30(5), 1334-1356.
https://doi.org/10.2514/1.B35077##
Hicks, Y. R. & Tacina, M. (2013, July). Comparing a Fischer-Tropsch Alternate Fuel to JP-8 and their 50-50 Blend: Flow and Flame Visualization Results. In
2012 Central States Section of the Combustion Institute Spring Technical Meeting (No. NASA/TM-2013-217884).
https://ntrs.nasa.gov/citations/20140000730##
Hicks, Y. R., Heath, C. M., Anderson, R. C., & Tacina, K. M. (2012, April). Investigations of a combustor using a 9-point swirl-venturi fuel injector: recent experimental results. In
20th International Symposium on Air Breathing Engines (ISABE 2011) (No. E-18001).
https://ntrs.nasa.gov/citations/20120008517##
Huang, C., Gejji, R. M., Anderson, W. E., Yoon, C., & Sankaran, V. (2014). Combustion dynamics behavior in a single-element lean direct injection (ldi) gas turbine combustor. In
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3433).
https://doi.org/10.2514/6.2014-3433##
Huang, C., Gejji, R., Anderson, W., Yoon, C., & Sankaran, V. (2020). Combustion dynamics in a single-element lean direct injection gas turbine combustor.
Combustion Science and Technology, 192(12), 2371-2398.
https://doi.org/10.1080/00102202.2019.1646732##
Li, Y., Jia, Y., Jin, M., Zhu, X., Ge, B., Mao, R., Ren, L., Chen, M., & Jiao, G. (2022). Experimental Investigations on NO x Emission and Combustion Dynamics in an Axial Fuel Staging Combustor.
Journal of Thermal Science, 31, 198-206.
https://doi.org/10.1007/s11630-022-1562-4##
Lieuwen, T., Torres, H., Johnson, C., & Zinn, B. T. (2001). A mechanism of combustion instability in lean premixed gas turbine combustors.
Journal of Engineering for Gas Turbines and Power, 123(1), 182-189.
https://doi.org/10.1115/1.1339002##
Mckinney, R. Cheung, A., Sowa, W., & Sepulveda, D. (2007, January). The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology. In
45th AIAA aerospace sciences meeting and exhibit (p. 386).
https://doi.org/10.2514/6.2007-386##
Mongia, H. (2003). TAPS: A fourth generation propulsion combustor technology for low emissions. In AIAA International Air and Space Symposium and Exposition: The Next 100 Years (p. 2657).
https://doi.org/10.2514/6.2003-2657##
Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor.
Proceedings of the Combustion Institute, 31(2), 2327-2334.
https://doi.org/10.1016/j.proci.2006.07.232##
Raju, M. S., & Wey, C. T. (2020). CFD Predictions of Soot & CO Emissions Generated by a Partially-Fueled 9-Element Lean-Direct Injection Combustor. In
AIAA Scitech 2020 Forum (p. 2088).
https://doi.org/10.2514/6.2020-2088##
Tacina, K. M., Lee, P., Mongia, H., Dam, B. K., He, Z. J., & Podboy, D. P. (2016). A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. In
52nd AIAA/SAE/ASEE Joint Propulsion Conference (p. 4891).
https://doi.org/10.2514/6.2016-4891##
Tedder, S. A., Tacina, K. M., Anderson, R. C., & Hicks, Y. R. (2014). Fundamental study of a single point lean direct injector. Part I: effect of air swirler angle and injector tip location on spray characteristics. In
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3435).
https://doi.org/10.2514/6.2014-3435##
Tian, L., Sun, H., Xu, Y., Jiang, P., Lu, H., & Hu, X. (2022). Numerical analysis on combustion flow characteristics of jet-stabilized combustor with different geometry.
Case Studies in Thermal Engineering, 32, 101885.
https://doi.org/10.1016/j.csite.2022.101885##
Wang, B., Zhang, C., Lin, Y., Hui, X., & Li, J. (2017). Influence of main swirler vane angle on the ignition performance of TeLESS-II combustor.
Journal of Engineering for Gas Turbines and Power, 139(1), 011501.
https://doi.org/10.1115/1.4034154##
Wang, K., Fan, X., Liu, F., Liu, C., Lu, H., & Xu, G. (2021). Experimental studies on fuel spray characteristics of pressure-swirl atomizer and air-blast atomizer.
Journal of Thermal Science, 30, 729-741.
https://doi.org/10.1007/s11630-021-1320-z##
Wang, Y., Wu, J., & Lin, Y. (2020). Effects of confinement length of the central toroidal recirculation zone partly confined by the small pilot stage chamber on ignition characteristics.
Aerospace Science and Technology, 107, 106277.
https://doi.org/10.1016/j.ast.2020.106277##
Xi, Z., Liu, Z., Shi, X., Lian, T., Li, Y. (2022). Numerical investigation on flow characteristics and emissions under varying swirler vane angle in a lean premixed combustor,
Case Studies in Thermal Engineering, 31, 101800.
https://doi.org/10.1016/j.csite.2022.101800##
Xu, Q., Shen, M., Shi, K., Liu, Z., Feng, J., Xiong, Y., ... & Du, Y. (2021). Influence of jet angle on diffusion combustion characteristics and NOx emissions in a self-reflux burner. Case Studies in Thermal Engineering, 25, 100953.
https://doi.org/10.1016/j.csite.2021.100953##
Yu, H., Suo, J., Liang, H., & Zheng, L. (2016). Experimental Study on Effusion Cooling with Tangential Air Inlet.
In 52nd AIAA/SAE/ASEE Joint Propulsion Conference (p. 5053).
https://doi.org/10.2514/6.2016-5053##
Zhu Z, Xiong Y, Zheng X, Chen, W., Ren, B., & Xiao, Y. (2021). Experimental and numerical study of the effect of fuel/air mixing modes on NO x and CO Emissions of MILD combustion in a boiler burner. Journal of Thermal Science, 30, 656-667.
https://doi.org/10.1007/s11630-020-1323-1##