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ABSTRACT 

Modeling of pressure drop in fluidized dense phase conveying (FDP) of powders 

is a tough work as the flow comprises of various interactions among solid, gas 

and pipe wall. It is difficult to incorporate these interactions into a model. The 

pressure drop depends on flow, material and geometrical parameters. The 

existing models show high error when applied to other pipeline configurations of 

varying pipeline lengths or diameters. The current study investigates the 

capability of machine learning (ML) techniques to estimate the drop in pressure 

in FDP conveying of powders. Pneumatic conveying experimental data were 

used for training the network and then for predicting the pressure drop. For 

estimating the pressure drop, four distinct ML algorithms light gradient boosting 

machine (LighGBM)), multilayer perception (MLP), K-nearerst neighbors 

(KNN), extreme gradient boosting (XGBoost), and were selected. XGBoost 

model performed better than other models chosen for the study with ±5% error 

margin while training and testing the data, and ±10% error margin in validating 

the data.  MLP, XGBoost, KNN, and LightGBM models predicted the data of 

pressure drop with MAE of 5.05, 1.19, 5.72, and 2.85, respectively, for training 

as well as testing data. Among the four models considered, the model using 

XGBoost algorithm performed the best, whereas the model using KNN 

algorithm performed poorly in predicting the FDP conveying pressure drop.  
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1. INTRODUCTION 

 Fluidized dense phase (FDP) conveying of powders 

involves two layers with dilute and dense flow in the 

upper and bottom portions of pipeline respectively. At 

the bottom of the pipeline, the dense phase layer moves 

like a wave (or dune) (Sanchez et al., 2003). For powders 

that retain air and in situations where the solids 

concentration or solids loading is very large, this form of 

flow is appropriate. Industries use this conveying method 

because it uses less power, lowers particle attrition, and 

prevents pipe erosion, especially at bends (Alkassar et 

al,. 2021a). On the other hand the flow is pulsatile and 

transient in nature, causing complex interactions of 

particles, gas, and walls (Shijo & Behera, 2017; Alkassar 

et al., 2020). This complex disposition of flow makes it 

challenging to mathematically model the FDP conveying. 

In an attempt to partially incorporate these interactions in 

mathematical models that predict pressure drop of 

conveying through pipelines, researchers have used 

discrete element method (DEM) and computational fluid 

dynamics (CFD) (Behera et al., 2013a; Alkassar et al., 

2021b). However, for long pipelines, simulation of CFD 

or DEM models consume more time. Few researchers 

have also developed models of solid friction factor for 

pressure drop prediction which was limited to smaller 

pipeline length and diameters (Datta & Ratnayake, 2003; 

Behera et al., 2013b). Hence modelling of the pressure 

drop in FDP conveying is still a difficult work for 

researchers. In the past few years machine learning (ML) 

technique has been applied extensively in different fields.  

 Several authors have applied different optimization 

techniques to optimize the system parameters. In order to 

avoid frequent pipeline clogs, pressure loss modeling and 

bulk transfer system simulation are carried out by Kim 

and Lee (2020). A genetic algorithm is used to determine 

ideal spacing between air boosters and the quantity of air 

boosters required to reduce pressure loss in the pipeline. 

Liu et al. (2023) optimized the parameters involved in 

photovoltaic geothermal coupling system. These 

variables include the configuration of pipes, the 

nanoparticle type, and the particle concentration in the 

nanofluids. The multi-objective optimization lowers the 

life cycle cost (LCC) as well as the overall levelized cost  
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NOMENCLATURE 

AAD% average absolute deviation%  MAE mean absolute error 

B bend loss coefficient  ma air mass flow rate 

D pipe diameter  ms solid mass flow rate 

d particle diameter  m* solid loading ratio 

FDP fluidized dense phase  Nb number of bends 

g acceleration due to gravity  RMSE root-mean square error 

ΔP total pressure drop  rhobl loose-poured bulk density 

ΔPb bend pressure drop  ρai inlet air density 

ΔPv vertical pressure drop  s activation function 

L pipeline length  slr solid loading ratio 

Lv length of vertical pipe  uai   inlet air velocity 

Ls(h) training error  wji weight 

 

of energy (LCOE) by 32.3% compared to the 

unoptimized photovoltaic geothermal coupling system. 

Zawawi et al. (2022) applied the response surface 

methodology (RSM) quadratic models to optimize 

operating parameters in automobile air-conditioning 

(AAC) system that were useful in finding the relation 

between input parameters and responses. With less 

compressor work and electrical consumption, the 

optimization boosted the capacity of cooling and the 

coefficient of performance (COP). The following 

paragraph discusses a few of these applications of 

machine learning. 

 Using huge data from simulations of gas-particle 

fluidization, two ML algorithms extreme gradient 

boosting (XGBoost)) and (artificial neural networks 

(ANN) were developed to predict drag adjustments (Zhu 

et al., 2020). Three distinct categorization algorithms: K-

nearest neighbors (KNN), multilayer perception (MLP), 

and random forest (RF) were applied for classifying flow 

patterns in pulsating heat pipes (Loyola-Fuentes et al., 

2022). MLP gave better prediction than other algorithms. 

A model was developed using a variety of ML 

techniques, capable of predicting the particle surface 

charge density in mono-dispersed gas-solid fluidized 

beds with greater accuracy (Lu et al., 2022). The most 

effective were MLP and Support vector regression (SVR) 

models. Machine learning was used to estimate syngas 

compositions and lower heating values (LHV) utilizing a 

variety of lignocellulosic biomass feedstocks under 

varied operating conditions (Kim et al., 2023). The three 

ML approaches used were RF, support vector machines 

(SVM), and ANN. The ML approach was applied to 

choose an optimum mesh size to improve the accuracy of 

the fluid-particle CFD-DEM model developed for large 

scale system (Davydzenka & Tahmasebi, 2022). In the 

recent past, many such applications of machine learning 

are observed. 

 The majority of models are only effective at 

estimating the pressure drop for specific pipeline 

arrangements (defined by definite pipeline length, 

diameter, number of bends, etc.) or for specific 

conveying material type. A few researchers have 

employed their models for predicting the pressure drop in 

pipeline length and diameter scale-up conditions (i.e., a 

longer pipeline or one with a larger diameter than the 

pipeline's dimensions in the test settings of the conducted 

experiment), and the results have consistently shown a 

significant error. The researchers did not use 

experimental data for very lengthy pipelines (more than 

200 m in length) while creating their models.  The ML 

approach has been applied in various fields, but few 

researchers have applied such technique in pneumatic 

conveying of powders. Few researches of machine 

learning in pneumatic conveying have been discussed in 

the following section. In this study, the straight-line 

pressure drop in FDP conveying is predicted and 

compared by using different ML algorithms. The present 

model would be helpful for prediction of pressure drop in 

long pipelines. It would also aid in rebuilding the model 

by addition of more experimental data of different 

conveying materials pertaining to a generalized model. 

1.1 Machine Learning in Pneumatic Conveying 

 A model was developed for prediction of the pipeline 

pressure drop using deep neural network (DNN) (Zhang 

& Lei, 2019). The benefit of this prediction model is that 

it immediately realizes the prediction of end-to-end 

pipeline pressure loss without extracting the features of 

flow parameter data in advance. Solid flow velocity was 

incorporated in a ML model to predict the meter output 

voltage, and this yields superior accuracy for a broad 

range of operating conditions in pneumatic conveying 

experiments (Kidd et al., 2020). Implementing this model 

gives a latest calibration function, which, by applying 

signal processing software produces a precise 

measurement of mass flow. Flow regime parameters 

were included as an input for developing a ML model for 

prediction of solid mass flow rate in pneumatic 

conveying by applying acoustic emission detection 

(Zhang et al., 2021). This method reduced the error of 

prediction in different flow regimes. The signal 

properties and the particle mass flow rate were correlated 

using ML models, such as SVM, ANN, and 

Convolutional Neural Networks (CNN), using training 

data with selected features (Abbas et al., 2022). 

Modeling of saturated flow pressure loss and boiling heat 

transfer in evaporating flow was proposed using new 

correlations and deep learning techniques. The 

implemented ideal deep learning (DL) model increased 

the prediction accuracy for both pressure drop and heat 

transfer (Chen et al., 2023). SVM model performs better 

than ANN and CNN. The ANN technique was used for 

the pressure drop prediction in FDP conveying (Shijo & 

Behera, 2021). Three different algorithms (Levenberg 

Marquardt,  Scaled  Conjugate  Gradient  and  Bayesian  
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Fig. 1 Schematic diagram of pneumatic conveying system (Behera et al., 2015) 

 

Table 1 Physical properties of conveying materials 

Sl. 

No. 
Material 

Mean 

particle 

diameter 

(µm) 

Particle density 

(kg/m3) 

Loose-poured bulk density 

(kg/m3) 

Pipe 

diameter 

(mm) 

Pipe 

length 

(m) 

1 EPS Dust 7 3637 610 69 168 

2 EPS Dust 7 3637 610 105 168 

3 EPS Dust 7 3637 610 69 554 

4 Fly ash 30 2300 700 69 168 

5 Fly ash 30 2300 700 69 554 

6 Cement meal 19 2910 1080 65 254 

7 Fly ash 22 2370 660 65 254 

8 Fly ash 14.9 2096 724 53 173 

 

Regularization) were applied. Levenberg Marquardt 

yielded better results in comparison to other two 

algorithms. 

1.2 Objectives of the Study 

 The present study develops a model involving various 

input parameters (such as pipeline diameter, pipeline 

length, air or solid mass flow rate, particle density and 

particle diameter), influencing the total pressure drop in 

FDP conveying. Artificial intelligence technology has 

been applied successfully in various fields of engineering 

to predict important parameters. Many ML algorithms 

are available for tackling regression problems. The 

present study aims to apply different ML algorithms in 

artificial intelligence for the prediction of total pressure 

drop (ΔP) in FDP conveying. 

2. EXPERIMENT 

 Tests of pneumatic conveying of fly ash were 

performed on a 173-m long 53-mm uniform-bore 

pipeline arrangement (Fig. 1). The configuration was 

having bends, horizontal and vertical sections. A group 

of sonic nozzles was utilized in the setup to control 

airflow rate into a blow tank (1 m3 capacity and top 

discharge) used for pressurizing the material to be 

conveyed. Compressed air was delivered using primary 

air (supplied at the base of blow tank) and secondary air 

(supplied through the upper zone of blow tank). 

Supplemental air had to be supplied to prevent a pipeline 

blockage. For measuring primary and secondary air 

pressures, two transmitters (accuracy: 0.05%; range: 0–5 

BarG) were used. Data of pressure were acquired at 

sample frequencies ranging between 60 Hz and 100 Hz. 

Load cells were used to measure the solid mass flow 

from blow tank to receivers. 

 The analysis in present study also included the test 

data obtained by the previous researchers (Mallick, 2009; 

Setia et al., 2016). Table 1 shows the physical properties 

of the materials conveyed and the pipeline arrangements 

employed by these researchers. They employed three 

different pipeline arrangements. The original pipeline 

arrangement was as follows: 168-m length, 69-mm inner 

bore pipe with five 90° bends that had a 1-m radius of 

curvature and 7-m vertical pipeline section. The second 

pipeline layout had 10 bends of 90o with an overall length 

of 254 m and an ID of 65 mm. The third pipeline 

configuration was as follows: 554-m length, 69-mm ID 

pipe with 17 bends of 90o, each having 1 m radius. 

 In the present analysis, pressure drop through straight 

horizontal pipeline was computed from the total pressure 

drop. The pressure drop across a bend section (ΔPb) and a 

vertical section (ΔPv) was determined applying Eqs. (1) 

and (2), respectively. The pressure drop through straight 



J. S. Shijo and N. Behera / JAFM, Vol. 16, No. 10, pp. 1951-1961, 2023.  

1954 

horizontal pipeline was computed by deducting the 

pressure loss across bends (ΔPb) and the pressure loss 

across vertical portions (ΔPv) from the total pressure drop 

found through experimentation. 

( )
2

1 *
2

ai ai
b b

u
P m N B


 = +

                                              (1) 

* ai
v ai v

si

u
P m gL

u
 =                                 (2) 

3.  MACHINE LEARNING MODELS 

 Supervised learning challenges are the issues with 

datasets containing both independent and dependent 

variables. Certain ML methods depend on similarity 

distance between data points that starts either explicitly 

or implicitly but fails to scale well in larger dimensions. 

As a result, a number of ML techniques perform poorly 

as the complexity of the problem rises, a phenomenon 

called the “curse of dimensionality."  

 A learning algorithm consists of a training data set S, 

obtained from a distribution D, and identified by a target 

function f. The main aim of the algorithm is to obtain a 

predictor that reduces error w.r.t. the distribution and 

target function. The learning algorithm is provided with a 

sample data, known as training dataset. Learning 

paradigm is also known as Empirical Risk Minimization 

(ERM) that is applied to identify a predictor which 

reduces the training error Ls (h) as given below (Shalev-

Shwartz & Ben-David, 2014): 
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 The above Eq. (3) is the foundation equation referred 

to in the learning theory (Vapnik, 1992). Training the 

data is to memorize the data, but it does not perform well 

for the unseen data (Zhang et al., 2018). The most 

common way to handle this issue is to use the ERM rule 

to a confined area while choosing predictor set called as 

the hypothesis class. In the following sections, a few of 

the learning theory-based prediction models are 

discussed briefly. 

3.1 Multi-Layer Perception 

 The MLP is an artificial neural network technique 

with fully connected multi-layer neural networks. In a 

single-layer perception, it is not enough to deliver 

necessary performance for many complex applications. 

Hence, MLP with layers stacked on one another is 

developed in which a signal flows in one direction only, 

hence termed as feed forward neural (FNN) network. The 

dependent variable is first extracted as a linear set of 

input variables, and then it is mapped as a nonlinear 

function of the features that were generated from the 

input variables. They are the most basic kind of deep 

network and are composed of many hidden layer 

neurons. Any common function can be built by 

considering networks with more interconnected layers of 

components. The weighted linear combination of inputs 

is processed by each layer, which then transforms it 

employing an activation function. Weights (wji) are 

equivalent to regression coefficients. The weight is 

connected from unit i to j in the layer 1 and s is the 

activation function. The output from unit j can be 

calculated using Eqs. (4): 

0

d
I

j ji i

i

z s w x
=

 
=  

 


                                                            (4)

 

3.2 Extreme gradient boosting 

 In recent years ML techniques are made more 

effective by boosting that was originally built to be 

applied for classification problems but efficiently applied 

in regression problems (Freund & Schapire, 1999). 

Boosting algorithms drastically improve capacity of 

weak learners in approximating good predictors for more 

complicated problems. Boosted trees are versatile and 

adaptable solution for various problems. The “curse of 

dimensionality" problem is resolved by tree boosting by 

learning the association between data points through 

adaptive neighborhood adjustment rather than depending 

on the distance measure. In contrast to neural networks, 

this also renders the model invariant to data modification, 

therefore scaling the features is no longer necessary. 

Furthermore, if the trees are built deeper, then the 

interactions between the elements that can be captured 

are higher (Nielsen, 2016). A regularization term is 

included in the Gradient Boosted Decision Trees 

(GBDT) variation known as XGBoost to prevent 

overfitting. Furthermore, XGBoost uses the second-order 

Taylor series of loss function as opposed to the first-

order derivative utilized in GBDT (Rashmi & Gilad-

Bachrach, 2015). 

3.3 K-Nearest Neighbors 

 Using a variety of distance metrics (such as 

Euclidean, Manhattan or Minskowski), the KNN-

regression attempts to locate points in the dataset that are 

nearest to the “query" point. At a specified K value, the 

KNN regression searches for the training data closest to 

x0 and categorized by N0 and can be presented as follows: 

0
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 A small value of K allows for a high variance and 

low bias, while a larger value of K allows for a low 

variance and high bias. The ideal value of K is calculated 

by bias-variance trade-off. The dataset is arranged into a 

tree-type hierarchical data structure applying the KNN 

algorithm (Kumar et al., 2008). 

3.4 Light Gradient Boosting Machine (Lightgbm) 

 The LightGBM is an algorithm proposed to speed up 

gradient boosting on decision trees (Ke et al., 2017). This 

is based on the idea that, while developing leaves, only a 

subset of possible splits is checked in reality. The 

Gradient-based One-Side Sampling (GOSS) and 

Exclusive Feature Bundling (EFB) are two original 

algorithms that enable this. With GOSS, a definite 

proportion of data instances with small gradients is 

neglected, and only the rest of the instances are used to 

calculate information gain. By grouping together the 
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mutually exclusive features, EFB helps to minimize the 

number of features.   

3.5 Selection of Model Parameters 

 The choice of parameters and their values in the MLP 

model is not simple since various factors, including 

solver type, activation function, learning rate, hidden 

layer size, maximum number of iterations, and batch 

size, must be taken into account. The ideal values of the 

parameters have been determined on the basis of 

correlation coefficient (R2) and root mean square error 

(RMSE) value. The parameter with the greatest influence 

in this model is the size of the hidden layer. 

 A lot of parameters are observed in the XGBoost 

model. Several of these parameters have a more 

significant effect on the performance of model, and are 

termed as Hyperparameters. The performance of a model 

can be considerably enhanced by selecting the ideal 

values of hyperparameters. Learning rate, maximum 

depth and number of estimators are the hyperparameters 

in this model. The present work used the scikit-learn 

GridSeacrhCV method to perform a cross-validated grid 

search. In search of the best result, it thoroughly tests 

each and every potential set of hyperparameters. 

 In the KNN model of regression, it is necessary to 

determine “Points in the neighborhood” (k) to achieve 

the target values of parameters. In order to calculate the 

 

Table 2 Model parameters 

Model Parameter Value 

MLP 

Activation function Relu 

Solver Lbfgs 

Regularization Parameter, 

α 
0.00001 

Hidden layer size 20 

Maximum number of 

iterations 
15000 

Batch size Auto 

Learning rate, λ 0.0025 

XGBoost 

Learning rate 0.015 

Number of estimators 700 

Maximum delta step 0 

Maximum depth 4 

Minimum child weight 0.001 

Scale pos weight 1 

Minimum child samples 20 

KNN 

Algorithm Auto 

Leaf size 30 

Metric Minkowski 

Power parameter 2 

Number of nearest 

neighbours 
2 

Weights Uniform 

LightGBM Learning rate 0.015 

 Number of estimators 700 

 Maximum depth 5 

 Evaluation Metric None 

target value for the closest "k" points, KNN regression 

first calculates the "k" nearest points in the space. For the 

present work, chosen value of the “k” is 2 by assigning 

equal weight in the neighborhood. “Points in the 

neighbourhood” is the most important parameter of KNN 

model. The distance metric ‘Minkowski’ is chosen for 

determining separation between two points.  

 In LightGBM model, the most important parameters 

chosen are the number of estimators, learning rate, 

number of leaves, maximum depth, etc. In this model, the 

scikit-learn GridSeacrhCV method was used to carry out 

grid search to find out the best set of hyperparameters.  

 The present models used different values or settings 

of parameters as presented in Table 2. 

3.6 Model Evaluation 

 In this work, codes for the ML models were 

developed by using various Python and libraries such as 

Numpy, Pandas and Scikit-learn. For training the 

network, 260 numbers of test data were applied. It 

involved the data of FDP conveying of materials such as 

EPS dust, fly ash and cement meal. The training and test 

data split ratio was 80%:20%. The model was validated 

by using 72 numbers of data. Four statistical parameters 

Mean absolute error (MAE), RMSE, R2 and   average 

absolute deviation percentage (AAD%) were calculated 

for evaluating the performance of each model. solid mass 

flow rate (ms), air mass flow rate (ma), solid loading ratio 

(slr), pipeline length (L), particle diameter (d), pipeline 

diameter (D) and loose-poured bulk density (rhobl) were 

chosen as input parameters whereas pressure drop was 

the output parameter.  

4. RESULTS AND DISCUSSIONS 

4.1 Feature Importance  

 The feature selection results of the suggested list of 

input variables using the mutual information (MI) are 

displayed in Fig. 2. MI is used to assess similarity 

between two datasets. The XGBoost technique is used to 

determine the feature significance. In this method, the 

value of individual variable has no importance. The 

relative value between the variables is more significant. 

According Fig. 2, ma and ms are the most significant of 

all the features mentioned above. However, it appears 

that ma with the highest F score has the most significant 

influence on the pressure drop. On the other hand, 

compared to other features the loose-poured bulk density 

is less significant in influencing the pressure drop.  

4.2 Performance analysis of ML models 

Iterations, learning rate, and error functions affect the 

wellness performance of a training algorithm. The 

difference between experimental value and predicted 

value determines the error function of a network. In order 

to reduce error functions, weights are updated in ANN. 

Various statistical measures, such as MAE, RMSE, R2, 

and AAD%, can be used to examine the functioning of 

the network. The value of R2 should be close to one (1) 

and the RMSE value should be as close as possible  

to  zero  (0)  for  the  best  outcomes.  The  degree  of  the  
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Fig. 2 Feature importance identified by MI technique 

 

correlation between expected and experimental data is 

judged by the value of R2 (Chang et al., 2012). 

In this study several statistical measures, such as MAE, 

RMSE, R2, and AAD%, were used to determine the 

accuracy of models. These statistical measures are 

defined as follows: 
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Fig. 3 Predicted pressure drop using MLP model 

versus the experimental pressure drop 

Table 3 Neuron independence test 

No. of 

neurons 
MAE RMSE R2 AAD% 

5 18.03 23.4 0.9605 7.45 

6 59.08 73.04 0.6153 24.37 

7 21.67 27.07 0.9471 8.95 

8 44.18 54.31 0.7872 18.24 

9 15.94 20.4 0.9699 6.58 

10 19.8 25.09 0.9545 8.18 

11 21.46 26.56 0.9491 8.86 

12 21.48 26.53 0.9492 8.87 

13 21.46 26.54 0.9491 8.87 

14 17.32 22.3 0.9641 7.16 

15 21.5 26.51 0.9492 8.88 

16 17.14 22.25 0.9643 7.08 

17 21.48 26.53 0.9492 8.87 

18 17.44 23.17 0.9612 7.21 

19 21.46 26.67 0.9486 8.87 

20 15.34 19.79 0.9717 6.34 

21 21.46 26.49 0.9493 8.86 

22 12.28 15.33 0.983 5.07 

23 21.53 26.87 0.9479 8.89 

24 18.04 23.7 0.9594 7.45 

25 19.91 25.18 0.9545 8.23 

26 17.8 23.47 0.9602 7.35 

27 17.66 23.04 0.9617 7.29 

28 17.43 23.19 0.9611 7.2 

29 18.27 23.85 0.9585 7.54 

30 16.17 22.28 0.9641 6.69 

 

4.3 Neuron Independence Test 

 By varying the number of hidden neurons in the MLP 

model from 1 to 30, a neuron independent test was 

performed. One may choose a network that makes 

accurate predictions. It is possible to select the network 

of exact prediction based on the lowest values of MSE or 

MRE and the maximal values of R2. Compared to other 

networks, the network with a single hidden layer made 

up of 22 neurons performs better as presented in Table 3. 

4.4 Comparison of Predicted and Experimental 

Pressure Drop Using Four Models 

 Figure 3 illustrates the plot between the experimental 

and predicted data of pressure drop by the MLP model. A 

10% variation in errors was observed. The MAE, RMSE, 

R2, and average absolute deviation of the MLP model 

were 12.22, 15.54, 0.9825, and 5.05%, respectively. 

 Figure 4 shows a comparison of experimental and 

predicted pressure drop using the XGBoost model. The 

margin of error between predicted and experimental data 

was less than 5%, which is extremely low. The XGBoost 

model gives an MAE of 2.88, RMSE of 4.13, R2 value of 

0.9987 and AAD of 1.19%. Among the three parameters,  
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Fig. 4 Predicted pressure drop using XGBoost model 

versus the experimental pressure drop 

 

 

Fig. 5 Predicted pressure drop using KNN model 

versus the experimental pressure drop 

 

the XGBoost model gives the lowest value for MAE and 

RMSE, and highest value for R2. 

 Plot of the experimental versus the predicted pressure 

drop applying the KNN model is shown in Fig. 5. In 

comparison to other models, the deviation between 

predicted and experimental results was within a 10% 

margin of error. Table 4 displays the MAE, RMSE, R2 

value, and AAD% values. An MAE of 13.99, RMSE of 

19.52, R2 of 0.9725, and AAD of 5.72% were obtained 

by using the KNN model. Among the four models, the 

KNN model yields the highest MAE, RMSE and AAD% 

values and the lowest R2 value. 

 The comparison of experimental and predicted 

pressure drop results applying the LightGBM model is 

shown in Fig. 6. The differences in predicted and 

experimental pressure drop data are limited to 10%. It  

 

Fig. 6 Predicted pressure drop using LightGBM 

model versus the experimental pressure drop 

 

 

Fig. 7 Comparison between the predicted pressured 

drop and experimental data using different models 

 

gave MSE, RMSE, R2 and AAD values of 6.91, 9.34, 

0.9936 and 2.85%, respectively. Figure 7 depicts a 

comparison between predicted pressure drop data with 

experimental data using four ML models. It displays that 

the predicted pressure drop using MLP, XGBoost and 

LightGBM models and the experimental results are very 

close to each other. However, the pressure drop 

prediction using the KNN model significantly differs 

from the results of the experiment. 

 The XGBoost model often is superior to several other 

ML algorithms as it employs Newton's technique, which 

applies a higher-order option for the optimization. 

Further randomization options found in XGBoost are 

applied to de-correlate each tree and lower the total 

variance of the model. This caused the improvement of 

XGBoost, a very effective ML model that considers the 

trade-off of bias-variance in the learning theory (Nielsen, 

2016). 



J. S. Shijo and N. Behera / JAFM, Vol. 16, No. 10, pp. 1951-1961, 2023.  

1958 

Table 4 Results of ML models 

Sl. 

no. 

Model 

name 
MAE RMSE R2 AAD% 

1 MLP 12.28 15.33 0.9830 5.07 

2 XGBoost 2.88 4.13 0.9987 1.19 

3 KNN 13.99 19.52 0.9725 5.72 

4 LightGBM 6.91 9.34 0.9936 2.85 

 

 
Fig. 8 Validation of the pressure drop data using 

MLP model 

 

 Considering performance, the LightGBM model is 

little behind the XGBoost model. However, the MAE 

and RMSE values in LightGBM appear to be higher than 

in XGBoost. Both grid and random searches were used to 

find the optimum hyperparameters for the current model, 

it may be because enough of the best hyperparameter 

tuning is not available. 

 The MLP model performs better but marginally lesser 

than the XGBoost and LightGBM models. MLP is 

capable of learning intricate connections between input 

and output parameters as well as the activation function 

of non-linear type that is found in the hidden layers of the 

network. They retain their robustness even in the context 

of noisy data and when the statistical distribution of the 

input parameters with regard to the response function 

changes (Memon et al., 2019). 

 The KNN model does not perform as effectively as 

done by the other three models. KNN is a distance-based 

network algorithm. The performance of the algorithm 

suffers due to the expensive disposition of finding the 

distance between two points. KNN is also susceptible to 

outliers and missing values. Therefore, it is necessary to 

replace missing values and eliminate outliers prior to 

using the KNN algorithm. 

5. VALIDATION OF MODELS 

 All the four ML models were validated with the 

experimental data. Figures 8, 9, 10 and 11 show the 

respective predicted versus the experimental pressure  

 
Fig. 9 Validation of the pressure drop data using 

XGBoost model  

 

 
Fig. 10 Validation of the pressure drop data using 

KNN model  

 

 
Fig. 11 Validation of the pressure drop data using 

LightGBM model  
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Table 5 Validation of ML models 

Sl. no. Model name MAE RMSE R2 Average absolute deviation % 

1 MLP 13.52 16.58 0.9795 5.46 

2 XGBoost 8.87 13.74 0.9859 3.56 

3 KNN 31.69 42.97 0.8623 12.87 

4 LightGBM 14.68 20.05 0.9700 5.83 

 

drop comparative plots using the MLP, XGBoost, KNN 

and LightGBM models respectively. Predicted errors 

using The XGBoost and LighGBM models were within 

±10% error margin, whereas using other two models it 

was within ±15%. The accuracy level in validating the 

models can be judged from the calculated values of 

statistical parameters given in Table 5. The XGBoost 

model yields the lowest values of MAE, RMSE and 

AAD and the highest R2 value.  

6. CONCLUSIONS 

 In this study ML models were developed for 

predicting the straight line pressure drop in FDP 

conveying of powders. Four different algorithms such as 

MLP, XGBoost, KNN and LightGBM were applied for 

modelling. Experimental data of cement meal, fly ash, 

and EPS Dust were used to train, test and validate the 

model. Key findings of this study are outlined below: 

(1) ‘Air mass flow rate’ has been found to be the most 

important feature influencing the output parameter of 

“pressure drop”. 

(2) Both XGBoost and LightGBM models both 

surpassed MLP and KNN models in accurately 

predicting the pressure drop (lower MAE, RMSE and 

AAD% values, and higher R2 value). 

(3)  The KNN model showed the highest values of MAE, 

RMSE and AAD% in training/testing and validating the 

model.  

(4) The MLP, XGBoost, KNN and LightGBM models 

predicted the pressure drop data with an AAD% of 

5.07%, 1.19%, 5.72% and 2.85% respectively, for 

training and testing data. The XGBoost model showed 

better results in validating the data.  

(5) The MLP model having a single hidden layer showed 

the optimum number of neurons, equal to 22. 
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