Bai, X., Ji, C., Grant, P., Phillips, N., Oza, U., Avital, E. J., & Williams J. J. R. (2021). Turbulent flow simulation of a single-blade magnus rotor.
Advances in Aerodynamics, 3.
https://doi.org/10.1186/s42774-021-00068-9##
Carmo, B. S., Sherwin, S. J., Bearman, P. W., & Willden, R. H. J. (2008). Wake transition in the flow around two circular cylinders in staggered arrangements.
Journal of Fluid Mechanics, 597, 1–29.
https://doi.org/10.1017/S0022112007009639##
Chen, W., Ji, C., Alam, M. M., Williams, J., & Xu, D. (2020). Numerical simulations of flow past three circular cylinders in equilateral-triangular arrangements.
Journal of Fluid Mechanics, 891, A14.
https://doi.org/10.1017/jfm.2020.124##
Figueroa, A., Cuevas, S., & Ramos, E. (2017). Lissajous trajectories in electromagnetically driven vortices.
Journal of Fluid Mechanics, 815, 415–434.
https://doi.org/10.1017/jfm.2017.55##
Inoue, T., Rheem, C. K., Kyo, M., Sakaguchi, H., & Matsuo, M. Y. (2013).
Experimental study on the characteristics of VIV and whirl motion of rotating drill pipe. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering.
https://doi.org/10.1115/OMAE2013-10182 ##
Lienhard, J. N. (1966).
Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders (Vol. 300). Pullman, WA: Technical Extension Service, Washington State University. Retrieved May 11, 2023, from
https://www.uh.edu/engines/vortexcylinders.pdf##
Matharu, P. S., Hazel, A. L., & Heil M. (2021). Spatio-temporal symmetry breaking in the flow past an oscillating cylinder.
Journal of Fluid Mechanics, 918, A42.
https://doi.org/10.1017/jfm.2021.358##
Phillips, T. S., & Roy, C. J. (2014). Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics.
Journal of Fluids Engineering, 136.
https://doi.org/10.1115/1.4027353##
Ping, H., Zhu, H., Zhang, K., Zhou, D., Bao, Y., Xu, Y., & Han, Z. (2021). Dynamic mode decomposition based analysis of flow past a transversely oscillating cylinder.
Physics of Fluids, 33, 033604.
https://doi.org/10.1063/5.0042391##
Schulmeister, J. C., Dahl, J. M., Weymouth, G. D., & Triantafyllou, M. S. (2017). Flow control with rotating cylinders.
Journal of Fluid Mechanics, 825, 743–763.
https://doi.org/10.1017/jfm.2017.395##
Sierra, J., Fabre, D., Citro, V., & Giannetti, F. (2020). Bifurcation scenario in the two-dimensional laminar flow past a rotating cylinder.
Journal of Fluid Mechanics, 905, A2.
https://doi.org/10.1017/jfm.2020.692##
Sumner, D., Price, S. J., & Paidoussis, M. P. (2000). Flow-pattern identification for two staggered circular cylinders in cross-flow.
Journal of Fluid Mechanics, 411, 263–303.
https://doi.org/10.1017/S0022112099008137##
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., & Ukeiley, L. S. (2017). Modal analysis of fluid flows: An overview.
AIAA Journal, 55, 4013– 4041.
https://doi.org/10.2514/1.J056060##
Taira, K., Hemati, M. S., Brunton, S. L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S. T. M., & Yeh, C. A. (2020). Modal analysis of fluid flows: Applications and outlook.
AIAA Journal, 58, 998–1022.
https://arc.aiaa.org/doi/10.2514/1.J058462##
Wang, H., Yan, Y. H., Chen, C. M., Ji, C. N., & Zhai, Q. (1996). Numerical investigation on vortex-induced rotations of a triangular cylinder using an immersed boundary method.
China Ocean Engineering, 33, 723–733.
https://doi.org/10.1007/s13344-019-0070-0##
Zdravkovich, M. M. (1977). Review—review of flow interference between two circular cylinders in various arrangements.
Journal of Fluids Engineering, 99, 618–633.
https://doi.org/10.12691/ajme-5-3-3.##