
 
Journal of Applied Fluid Mechanics, Vol. 16, No. 12, pp. 2300-2315, 2023.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

https://doi.org/10.47176/jafm.16.12.2030 

 

 

 

Numerical Study of Forced Nonlinear Acoustic Gas Oscillations in a 

Tube under the Action of Two Pistons with Phase Shift  

D. A. Gubaidullin and B. A. Snigerev † 

Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, 
Kazan, Tatarstan, 420111, Russia  

†Corresponding Author Email:  snigerev@imm.knc.ru  

ABSTRACT 

Nonlinear acoustic oscillations of large amplitude created in a gas-filled tube 

under the action of two pistons located at the ends of the pipe are numerically 

investigated. The pistons oscillate according to the harmonic law at one of the 

natural frequencies and with different values of phase shift. The movement of 

the gas is described by mathematical equations of conservation for the main 

determining relations for the flow, which are estimated by applying the finite 

volume method based on OpenFOAM package. The non-stationary forced 

oscillatory motion of a gas inside an axisymmetric tube from a state of rest to a 

periodic steady motion is investigated. The features of nonlinear acoustic 

fluctuations of gas in cylindrical duct under the action of two pistons are found. 

The effect of the phase shift value has a strong effect on the oscillation amplitude 

of gas, when pistons oscillating at equal natural frequencies, in turn, when the 

pistons oscillate at different natural frequencies, the effect is very small. In 

particular, resonant oscillations are detected when the pistons vibrate at the same 

frequency values equal to odd values of their own higher harmonics in the 

absence of a phase shift value. In the case when the frequency values are equal 

to even values of the natural harmonics, resonant oscillations occur when the 

pistons move in anti-phase. The numerical method appears to work well and 

would be hoped for practical computations of different resonators.  
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1. INTRODUCTION 

Creating intense pressure oscillations inside channels 

has a variety of practical applications in many areas of 

technology, ranging from acoustic compressors (Backhaus 

& Swift, 1999), thermal acoustic devices (Thomas & 

Muruganandam, 2018), to engines (Swift, 1992). Since the 

performance of such devices increases with the increase in 

the intensity of forced pressure fluctuations, the scientific 

researchers continue to search for new approaches and 

methods to increase the amplitude of acoustic harmonic 

oscillations and methods for their control. A large number 

of theoretical, numerical, and experimental papers have 

been devoted to the study of oscillations in tubes (Saenger 

& Hudson, 1960; Chester, 1963; Aganin et al., 1996; 

Cruikshank, 1972; Zaripov & Ilhamov, 1976; Alexeev & 

Gutginger, 2003; Hossain et al., 2005; Penelet et al., 2012; 

Antao & Farouk, 2013; Ning & Li, 2013; Pillai & Manu, 

2020). Most of these works are devoted to the study of 

straight cylindrical channels with a solid rigid wall at one 

end and a movable piston at the other. The vibration of the 

piston near the resonant frequency for the tube leads to the 

formation of vibrations of the gas column inside the 

channel with a more intense oscillation amplitude. Early 

studies have shown that an increase in the amplitude of the 

piston movement at the frequency that characterizes the 

maximum response leads to the formation of pressure 

waves with a steep frontal front (saw-tooth) inside the 

resonator. One way to increase the amplitude of harmonic 

oscillations is to use a resonator with a variable cross-

sectional area, as opposed to straight cylindrical channels 

(Lawrenson et al., 1998). In a number of works, numerical 

methods based on the finite-difference approach are used 

to study one-dimensional oscillations in the channels 

(Ilinskii et al., 1998; Chun & Kim, 2000; Vanhille & 

Campos-Pozuelo, 2001). Acoustic effects are used in 

various process reactors for the chemical industry. In order 

to develop the most economical modes of use of these 

devices, it is desirable to make a preliminary assessment 

of productivity and efficiency at operation at various 

determining mode parameters, selection of the most 

suitable operating media. The most accurate prediction for 

determining economical modes can be obtained with the 

help of three-dimensional mathematical modeling based 

on equations that adequately describe all the processes 

taking place. The developed numerical algorithms and 

computational software packages using the basic laws of

http://www.jafmonline.net/
https://doi.org/10.47176/jafm.16.12.2030
mailto:%20snigerev@


D. A. Gubaidullin and B. A. Snigerev / JAFM, Vol. 16, No. 12, pp. 2300-2315, 2023.  

 

2301 

NOMENCLATURE 

cp  heat capacity of air   t time  

d0  diameter of the tube    density of air 

L length of the tube     dynamic viscosity of air  

k thermal conductivity of the air  ij  viscous stress tensor 

Mac Mach number  v  acoustic boundary layer thickness 

(viscous penetration depth ) 

Pr Prandtl number    phase angle 

Reac acoustic Reynolds number  OpenFOAM open field operation and manipulation 

ui velocity components (i=1, 2, 3)  FFT fast Fourier transform 
  angular frequency of oscillation  CFD  computational fluid dynamics 

T static temperature  CFL Courant Friedrichs Lewy 

 

conservation of mass, angular momentum and energy are 

increasingly widely used for these purposes (Marie et al., 

2009). The use of forced oscillations in various branches 

of industry is constantly expanding, generated by external 

influences. In thermoacoustic systems with many plates 

inside the resonator, which narrow the flow area, turbulent 

pulsations can occur in the vicinity of these baffles. The 

software packages modeling spatial flows with different 

turbulence models are being actively developed for 

modeling such flows. The state of the art and the 

tremendous progress that has been made in hybrid 

modeling of aero-acoustic sound are reviewed in 

(Colonius & Lele, 2004; Wang et al., 2006). The usage of 

OpenFOAM for different aeroacoustics problems is 

demonstrated in (Singh & Rubini, 2015; Piscaglia et al., 

2013). The different usage of solver from this software 

package for modeling gas fluctuations in a cylindrical 

duct, accompanying by the formation of standing waves 

with sharp crests are presented in (Gubaidullin & 

Snigerev, 2022). Here nonlinear characteristics for heavy 

fluctuations of compressible gas in a closed duct at higher 

natural frequency have been found. For non-linear gas 

fluctuations with a weak shock wave of pressure drop in 

the nodes for the velocities, the extensive amplitudes of 

the alterations in particle velocities over a very small 

interval of time are generated. Many works have been 

devoted to the experimental and theoretical study of flows 

caused by vibrations of cylinders or bluff bodies, which is 

reflected in the review (Wang et al., 2020). Various 

important phenomena of interaction between liquids and 

oscillating bodies have been identified, depending on the 

different modes of their oscillations. The effect of the 

phase shift of the oscillations of two twin square cylinders 

on the flow structure was carried out in (Mithun et al., 

2018). The improvement of the heat exchange processes 

of the oscillating plate inside the cylinder was carried out 

in (Li et al., 2016). Theoretically and experimentally, the 

peculiarity of the flow near oscillating square cylinders in 

the form  of an effect  the ‘lock-in’ phenomena, where the 

vortex shedding becomes one with the oscillation 

frequency, is observed (Bearman & Obasaju, 1982).  

For more better understanding of the features of 

acoustic flows, studies of acoustic gas oscillations in 

resonators arising from forced excitations under the 

influence of several phase-shifted pistons become 

relevant.  In this study, the goal is to examine propagation 

of acoustic waves in cylindrical duct under the action of 

two movable pistons at both ends at first natural frequency 

and for higher garmonics. The features of acoustic gas 

oscillations during piston vibrations at equal natural 

frequencies with a phase shift and also at different values 

of the natural harmonics are considered.  For those values 

of phase shift of pistons oscillations when resonant 

oscillations of gas in the tube occur, informative 

waveforms of pressure and particle velocity variations   

along the center of the duct for one oscillation period are 

presented . To solve this problem, a numerical method has 

been used for modeling nonlinear acoustic spatial 

resonators under the influence of complex harmonic 

excitation with phase shift. To approximate the equations 

describing the motion of a viscous heat-conducting gas, 

the technology of the OpenFOAM library is used, when 

the relations written in integral form valid for the selected 

control volume of the region are discretized (Weller et al., 

1998; Moukalled et al., 2001). The solver 

rhoPimpleCentralFoam developed in (Kraposhin et al., 

2015; Kraposhin et al., 2018) is used, which is designed to 

model gas flows over a wide range of the velocities. The 

propagation of waves back and forth in a tube is generated 

by two movable pistons at the ends. Weak shock waves 

propagating within the tube at the first resonant frequency 

and higher modes frequencies are numerically captured. 

 The remaining material of the article is planned in the 

following paragraphs. In Sec. II the Navier-Stokes for 

compressible gas are presented.  The results of numerical 

simulation of fluctuations of gas in duct forced by two 

pistons vibrating at different natural harmonics with phase 

shift are presented in Sec. III. Finally, the conclusions of 

the paper are given in Sec. IV.  

2. MATHEMATICAL MODEL 

The mathematical model based on our previous study 

(Gubaidullin & Snigerev, 2022), where nonlinear 

acoustics forced oscillations in gas-filled tube, created by 

one piston are investigated. The used numerical model 

give results which are in good agreement with the data for 

intensive gas oscillations with breaking waves of various 

experiments (Saenger & Hudson, 1960; Zaripov & 

Ilhamov, 1976; Alexeev & Gutginger, 2003) and 

numerical research (Antao & Farouk, 2013). An extended 

description of the numerical model using the OpenFOAM 

library (Moukalled et al., 2001) is given in (Gubaidullin & 

Snigerev, 2022), and this paper gives only a brief 

description of the used numerical method. The flow and 

heat transfer modelling include the fluid dynamic 

equations of conservation of mass (continuity equation), 
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momentum (Navier-Stokes equation), and energy for 

considered domain. They written in cartesian form as:  

( )
0,i

i

u

t x

 
+ =

 
    (1) 

( ) ( )
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j ij ji
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   

    (4) 

The equation of state was choosing as ,p RT=

where R universal gas constant. It is assumed that the 

thermo-physical properties   and k  related on 

temperature. The dynamic viscosity  is specified by 

Sutherland law 

1.5

0

0 0

= ,
T CT

T T C





  +
 

+ 
    (5) 

 where 
0T = 273 K, 

5

0 1.789 10 −=  Pa s, C is constant with 

value 110. The following relation is applied for thermal 

conductivity , Pr 0.72.
Pr

pc
k


= =  The accurate 

representation of gas behavior by equations (1) - (5) are 

solved by means of solver, which based on the open source 

CFD toolbox OpenFOAM (Weller et al., 1998; Moukalled 

et al., 2001). A full description of the numerical 

methodology is presented in a previous paper (Gubaidullin 

& Snigerev, 2022). 

3.  RESULTS AND DISCUSSION 

The scheme of computational domain used for 

numerical simulation is shown on Fig. 1. The area is 

represented by a duct, which has a length 
36.567 10 mL −=  with diameter

3

0 28 10 md −=  . On left 

side (
1x L= ), the tube is closed the left end by a piston 

that oscillates according to the law ( )1 0 sinL L Lx l t = + , 

and on the other side with another piston with moving as

( )1 0 sinR R Rx l t = + .The pistons movement amplitude is 

3

0 33 10 ml −=  . Non-dimensional parameter for the 

selected tube ( )
1/2

0 /l L =  is 0.126. The pressure  

(
0 101325p = Pa), density (

0 1.165 = kg/m3), 

temperature (
0 293T = K) taken for air at standard 

thermodynamic conditions. The rest parameters are taken 

as: the gas constant 287R = J/kg K, specific heat at 

constant pressure 1.006pC =  kJ/ kg K , the speed of sound 

is defined as ( )
1/2

0sс RT= . To determine the nature of 

the oscillations in the resonator, we introduce four control 

points (1, 2, 3, 4), which is located in coordinates 1-

1 / 0.02,x L= 2- 
1 / 0.5,x L=  3-

1 / 0.75,x L= 4-

1 / 0.98x L= (Fig. 1). The control points 1, 4 are located 

in the area close to the end walls of the resonator, and the 

point 2 corresponds to the middle of the pipe, the point 3 

corresponds to the middle of second half of the tube. In the 

case of linear oscillations, these points are characteristic 

of oscillations at the first natural frequency (the pipe 

length is / 2L = ). The point located in the center of the 

pipe is the node for pressure (minimum amplitude of 

oscillations), and the extreme points are anti-nodes 

(maximum amplitude). The viscous penetration depth for 

oscillations flow is given by
2

v




 
= (Kinsler et al., 

1999). Dimensionless characteristic parameters local 

acoustic Reynolds and Mach number defined as (Kinsler 

et al., 1999; Antao & Faraok, 2013) 

0 0Re ,v
ac ac

s

U U
M

c

 


= =    (6) 

Use the value for 
0U  the meaning of 

max

1u , where 

max

1u is the largest velocity value in duct for oscillations in 

the tube (obtained from calculation on coarse grid) the 

maximum acoustic Reynolds and Mach numbers take the 

values 
max maxRe 597, 0.14.ac acM= =  The issue of 

transition from the laminar stream to unstable regime for 

oscillating flows, with the possible formation of turbulent 

pulsations is discussed in (Ohmi & Iguchi, 1982; 

Carpinlioglu & Gundogdu, 2001). The velocity 
maxRe ac  

calculated from the maximum velocity value is in the 

range of values for the laminar flow regime, according to 

the estimates proposed in (Carpinlioglu & Gundogdu, 

2001). Hence for the description the oscillations of gas in 

the tube, the unsteady Navie-Stokes equations (1) - (4) can 

be used. Forced acoustic oscillations of a gas column with 

piston moving by at one end of resonator induce a  

high-amplitude standing wave on resonant frequencies  

 
Fig. 1 Model of resonator with two pistons 
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/ , 1,2, ...n sn c L n = =    (7) 

where 
sc is the speed of sound in the undisturbed flow. 

In the case of excitation of oscillations by means of two 

pistons at resonant frequencies, defined for a pipe with one 

closed end by the relation Eq. (7), acoustic flow depends 

from the parameters, determining the frequency  and 

phase shift   given at the opposite ends of the tube. The 

system under consideration is a gas-filled tube (Fig. 1), 

closed at the left end by a piston that oscillates according 

to the different laws as ( )1 ,L L L

i jx g  = =

( )1,..4sin ,L L

o i jl t = + where 1,..4

L

i =   takes the values 

1 2 3 4, , ,    , and the value of 
L

j parameter remains 

unchanged as 0 .L = On the right end, the piston 

oscillates according to the law, which has the form

( )1 ,R R R

i jx g  = = ( )1,..4sin ,R R

o i jl t = +  on the right piston

R

i  updates similarly to
L

i and the phase shift
R

j can 

take the following values
1,..4

4

R

j j


 = =   for equal 

frequencies, and 1,..4 0, / 3, / 2,R

j   = = for non- 

equal frequencies. Therefore, the calculations for the 

selected two variants of piston parameters change are 

given below. For the first variant the same values of 

frequencies for both pistons are considered, and for the 

second case at different values of piston motion 

parameters with phase shift. 

3.1 Movement of Pistons at Equal Resonant 

Frequencies with Phase Shift  

a) Oscillations at first resonant frequency 

1.
L R  = = Consider first the case of oscillations when 

oscillations occur with equal resonance frequencies on the 

left and right piston, in this event, the frequencies coincide 

with the first resonant harmonics ( )1 1 , ,L Lx g  =

( )1 1 , .R Rx g  =  On the left piston 0L = , and on the 

right piston, the phase shift 
R changes for each case 

with increments 
4


, , 1,..4

4

R

j j j


 =  = . The time, when 

the structure will make 80 ( /2st c L = 80) oscillation 

cycles is selected for presentation of calculation results at 

the first mode. Gas fluctuations in a circular tube are 

assumed to be axisymmetric, so as the computational 

domain the part of the duct with the solution angle 5 is 

selected, as shown in Fig. 2.  In the numerical solution of 

equations (1) - (5), boundary conditions of symmetry are 

set on the side walls of the selected sector. The movement 

of the piston is given as a boundary condition in the form 

as ( )1 1 0 1 1/ cosL L L L Lu d x dt l t  = = + . The boundary 

conditions are given on the input wall 
1 :S  

( )1 0 1 1cosL L L Lu l t  = + , 
2 3, 0,u u =  0 ,T T= 0.p p= On 

the right piston the boundary conditions are applied 

similar way as ( )1 0 1 1cosR R R Ru l t  = + ,
2 3, 0,u u =

0 ,T T= 0.p p= On the wall of the duct
5S  “no-slip” 

 

Fig. 2 Sketch of computational domain for 

axisymmetric model of gas oscillations in cylinder 

tube with two pistons 

 

conditions ( )0, 1..3iu i= =  and / 0T n  =  are imposed. 

On the left 
3S and right 

4S   boundary of the selected 

sector of tube:  

0, 0, 0, 0, 0,s
n

up T
u

n n n n

   
= = = = =

   
 

where n  is the normal, and s  is the tangent unit vectors 

to the surface. Initial conditions taken as

0 00, , ,i ou p p T T  = = = = , with being
0 0, p and

0T are 

properties of air at standard thermodynamic conditions. 

The numerical scheme is tested for convergence on 

grids with different mesh sizes including finite volumes 

eM =34560, 138240, 276480. On plane side 
3S  faces of 

volumes are rectangles with divisions in directions 
1x and

2x  for different meshes are 
1 512 64,N =   

2 1028 128,N =  3 2056 128N =  . For mesh 
2N  the face 

of surface
3S was separated into 1028 grid points with 

equal size 
1

33.32 10xh −=  m in axial direction
1x . In 

direction 
2x the rectangles are compressed in the direction 

of the solid wall. The viscous penetration depth have value
43.08 10v
−=  m. Near the wall at a depth of 

v there are 

5 computational grid nodes, so that the largest and the 

smallest mesh size are 
2

max 46.8 10xh −=   and

2

max 46.8 10xh −=  m respectively. The calculations are 

performed with time step t , which satisfies the CFL  

condition with  a Courant number ( ( ) /sC c t x=   , 

where 
sc is the acoustic speed for air, 

( )
1 2 3

min , ,x x xx h h h = ) is equal to 0.4. For mesh
2N ,

t is taken to be
51.12 10− s. In Fig. 3 the numerical 

convergence with number of control volumes increasing 

is examined for the case ( )
1 1 ,0 ,Lx g = ( )

1 1 , / 2Rx g  =

. The pressure and axial velocity in some control points of 

the tube are obtained on three different grids of

1 2 3, ,N N N . On Fig. 3(a) it is shown that difference in 

distributions of pressure on variation of meshes is very 

small. The alterations of velocity 1 0/u l  at central point2 

with time /st c L  are demonstrated on Fig. 3(b).  
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(a)                                                                        (b) 

Fig. 3 Mesh refinement study (curve 1 -
1N mesh, 2 -

2N , 3 -
3N ) of the time dependent on the dimensionless time 

/st c L for ( )
1 1 ,0 ,Lx g = ( )

1 1 , / 2Rx g  = variables: (a) 
0/p p at point 1(

1 / 0.02x L=  ); (b) axial velocity component 

1 1/ ou l at point 2 (
1 / 0.5x L= ) 

 

 

(a)                                                                        (b) 

Fig. 4 (a) Time dependences for ( )
1 1 ,0 ,Lx g = ( )

1 1 1,2,R R

jx g   == at point 1 on the dimensionless time /st c L  variable 

0/p p for different values of phase shift R : curve 1- 0R = , R = ; (b) Fourier transform of the signal 
0/p p  in 

time at point 1 for 
1 , 0L R L R    = = = =  

 

The feature of nonlinear vibrations are manifested by the 

fact, that vertical velocity jumps occur at some time instant 

at nodal point for the oscillation velocity. The grid 
2N  

provides satisfactory accuracy for the calculations, 

therefore it is chosen as the base grid for the computations. 

The Fig. 4(a) shows the dynamics of the pressure change 

over dimensionless time values /st c L from 160 to 162 

at point 1 for cases when the pistons oscillate at the first 

resonant frequency ( ( )
1 1 ,0 ,Lx g = ( )

1 1 1,2,R R

jx g   == ) 

with two phase shifts on the right piston 1,2 0,R

j = = . In 

Fig. 4(a), curve 1 corresponds to the case when

0, 0L R = = , and curve 2 - 0,L R  = = . Analysis of 

this figure indicates that in the case of piston oscillations 

without phase shift (Fig. 4(a), curve-1), the oscillations are 

superimposed on both pistons and, over time, intense 

resonance oscillations develop with a weak shock front in 

the tube. In case of 
R =  (Fig. 4(a), curve-2) the 

opposite effect occurs, leading to practical damping of 

oscillations at the left end, and in the whole area of the 

tube. The maximum values of the pressure drop at point 1 

correspond to the linear theory, according to which, there 

is an antinode of pressure where it transforms from time 

to time according to the harmonic law with a large 

amplitude. For strong nonlinear oscillations, it can be seen 

that the pressure profile is very different from the 

harmonic character, since the pressure wave profile is not 

symmetrical with respect to the central axis relating to the 

external atmospheric pressure. The left part of the pressure 

front has a steep vertical section of the pressure increase, 

and the right part of the pressure decrease is more smooth. 

The Fig. 4(b) presents the FFT of the pressure time history 

0/p p at point 1 for the case 1 , 0L R L R    = = = = at 

the resonant frequency,
0/p p is the non-dimensional 

oscillating pressure. It can be seen that in this case, the 

resonant oscillations are observed at the first resonant 

frequency. The pressure drop ( )*

max min 0/p p p p = −

drops from a value of 0.65 to 0.03. The Fig. 4(b) shows 

that the pressure change over time, has the largest 

amplitude at the first harmonic, and the amplitudes of the 

other higher harmonics monotonically decrease with 

increasing values of the multiplicity of the natural 

frequency. The Fig. 5 illustrates similar curves 

corresponding to the midpoint of the duct (point 2) for the 

same time period. For this point, according to the linear 

theory, corresponding to the pressure node  

(
1 , / 2L  = = ), the resonant pressure fluctuations  
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(a)                                                                        (b) 

 

Fig. 5 (a) Time dependences for ( )
1 1 ,0 ,Lx g = ( )

1 1 1,2,R R

jx g   ==  at point 2 on the dimensionless time /st c L   

variable 
0/p p   for different phase shift 1,2

R

j = values: 1- 0R = , 2- R = ; (b) the axial component of the velocity

1 1 0/u l at different value of 1,2

R

j = : 1- 0R = , 2- R =  

 

 
(a)                                                                        (b) 

Fig. 6 Axial variations of variables for ( )
1 1 ,0 ,Lx g = ( )

1 1 ,0Rx g = with a time increment of / 0.1st c L =   for half-

period of oscillations for dimensionless time /st c L   from 160 to the 161: (a) pressure 
0/p p ; (b) axial velocity 

component
1 1 0/u l  

 

should be minimal. In the case of nonlinear oscillations, it 

can be observed that 
0/p p  is about half of the values 

from point 1, and the oscillation frequency is twice of the 

resonant frequency (
12 = , Fig. 5(a)). The shape of the 

pressure waves in this case has a saw-shaped character, 

containing a vertical section of pressure growth, and an 

almost linear section of decrease, and there is no smooth 

transition between them. Intense vibrations of the axial 

velocity in the middle of the tube (point 2) is illustrated in 

Fig. 5(b) (curve - 1). A special feature of the velocity 

allocation is the transition from sinusoidal forms of 

velocity change over time with harmonic oscillations to 

almost rectangular forms, when the smooth alteration is 

replaced by a jump-like one with some smooth section for 

changing the direction of the speed from positive to 

negative. Similar calculations for the resonator at the first 

resonant frequency of both pistons at shift parameters 

values of 0L = ,
R  updates for right piston from 0R =

to 
R = with step / 4R  = showed, that at 0R = the 

oscillations of gas are resonant, and by increasing the 

phase shift parameter 
R the oscillations intensity 

decreases, until 
R = , when the oscillations almost 

damped. The Fig. 6 shows the instantaneous waveforms of 

pressure and velocity along the coordinate 1x ( 

1 2 30 , , 0x L x x  = )  for one cycle of oscillations for 

corresponding time 160 to 161 with time step 

/ 0.1st c L =  for ( )
1 1 ,0 ,Lx g = ( )

1 1 ,0 .Rx g =  In this 

picture, the number 1 marks the curve showing the 

pressure waveforms at time instant, when the maximum 

pressure drop is located near the left piston, and the 

number 2 corresponds to the state    when the pressure peak 

reaches the opposite end of the pipe, moving in the 

direction shown by the arrow. The first half of the 

fluctuation period is characterized by the fact, that the 

zone of increased pressure, created by the left piston 

moves through the tube with a monotonous decrease in the 

maximum value as it approaches to the right piston. The 

amplitude of pressure fluctuations as it moves is 

preserved, and after reflection from the right piston the 

dynamics of pressure changes occur in the opposite 

direction. The movement of the pressure drop along the 

duct (Fig. 6(a)) is accompanied by a change of the velocity 

1 0/u l along the coordinate 1x ( 
1 2 30 , , 0x L x x  = ), 

shown in Fig. 6(b). The propagation of a weak pressure 

shock wave along the duct leads to the fact, that it is 

accompanied by movement of the zone of strong change 

of particle velocities in the same direction. The movement 

of the pistons at the first harmonic with a phase shift leads 

to an increase in the amplitude of oscillations and the 

formation of resonance only for the case ( )
1 1 ,0 ,Lx g =

( )
1 1 ,0 .Rx g =  With the change of 

R  a monotonic 

decrease of the oscillation amplitude is observed, and at 

( )
1 1 ,0 ,Lx g = ( )

1 1 ,Rx g  = the there is a significant 

damping of oscillations in the whole tube region. 
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(a)                                                                        (b) 

Fig. 7 (a) Time dependences for ( )
1 2 ,0 ,Lx g = ( )

1 2 1,2,R R

jx g   == at point 1 on the dimensionless time /st c L    

variable 
0/p p  for different values of phase shift R  curve 1- R = , 2- 0R = ;3- ( )

1 1 ,0 ,Lx g = ( )
1 1 ,0Rx g = ; (b) 

Fourier transform of the signal
0/p p in time at point 1 for ( )

1 2 ,0 ,Lx g = ( )
1 2 ,Rx g  =  

 

 
(a)                                                                        (b) 

Fig. 8 Axial variations of pressure 
0/p p for ( )

1 2 ,0 ,Lx g = ( )
1 2 ,Rx g  = along center line with a time increment of

/ 0.07st c L = : (a) for first half-period of oscillations with dimensionless time /st c L from 160 to the 160.5; (b) for 

second half-period of oscillations from time 160.5 to the 161 

 

b) Oscillations at second resonant frequency 

2

L R  = = . A similar oscillation mode behavior 

depending on the phase shift was found at the second 

resonant frequency ( )
1 2 ,0 ,Lx g = ( )

1 2 ,R Rx g  = for 

both pistons. On the left piston 0L = , and on the right 

piston, the phase shift changes for each case with 

increments of
4


, , 1,..4

4

R

j j j


 =  = . Some own 

features in behavior of oscillations the gas in tube are 

found. The Fig. 7(a) presents the dynamics of the pressure 

change over time at point 1 for cases when the pistons 

oscillate at the second resonant frequency ( 2

L R  = =

) with two phase shifts on the right piston 1,2 0,R

j = = . In 

this case, the boundary conditions do not update, except 

for the frequency of forced oscillations on both pistons are 

doubled ( 2 12L R   = = = ). Comparing Fig. 4(a) and 

Fig. 7(a) it can be observed, that if at the first natural 

frequency resonant oscillations are formed at 0 ,R =  then 

at the second harmonic the behavior is exactly the 

opposite. At an even second harmonic, the resonant 

response occurs at
R = , and at the 0R = oscillations 

are damped. In this case, the maximum value of the 

pressure drop increases by 2% percent, and the attenuation 

also occurs with an increased amplitude of about 9 % 

percent, while the speed and frequency of the piston 

movement are doubled. The Fig. 7(b) presents the FFT of 

the pressure time history of 
0/p p at point 1 for the case

2

L R  = = , .R =  It can be viewed that in this case, 

resonant oscillations are observed at the second resonant 

frequency.  The Fig. 7(b) shows that in the pressure change 

over time, the main component has the largest amplitude 

at the second harmonic, and the amplitudes of the other 

higher harmonics monotonically decrease with increasing 

values of the multiplicity to the second natural frequency. 

The Fig. 8 illustrates shows the instantaneous waveforms 

of pressure along the coordinate 1x ( 

1 2 30 , , 0x L x x  = ) for one cycle of oscillations for 

corresponding time 160 to 161 with step / 0.07st c L =

for ( )
1 2 ,0 ,Lx g =  ( )

1 2 ,Rx g  = . In Fig. 8(a), the 

number 1 marks the curve showing the pressure 

waveforms at time instant, when the two maximum 

pressure drops is located near the left and right piston, and 

the number 2 corresponds to the state, when the pressure 

peaks reaches the middle of the duct, moving in the 

directions shown by the arrows. Unlike to the first 

resonant frequency, when a single wave (Fig. 6(a)) 

propagates back and forth in the tube over time, two weak 

shock waves perform similar movements here. The Fig. 

8(a) shows the convergence of two pressure drops towards 

the middle of the pipe, where the pressure is almost 

homogeneous and gradually decreases. The getting closer 

and then collision of two sharp pressure drops leads to 

their merging and the formation of one more powerful 

burst of pressure in a narrow zone, then it begins to spread 

in both directions with the formation of a new zone of 

uniform pressure in the middle of the duct (Fig. 8(b)). The  
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(a)                                                                        (b) 

 

Fig. 9 Variations of axial velocity component 
1 1 0/u l  (a) along center line for ( )

1 2 ,0 ,Lx g = ( )
1 2 ,Rx g  = with a 

time increment of / 0.07st c L = for first half-period of oscillations with dimensionless time /st c L  from 160 to the 

160.5; (b) time dependences 
1 1 0/u l  on the time /st c L : 1- ( )

1 2 ,0 ,Lx g = ( )
1 2 ,Rx g  = at point 3, 2 - ( )

1 1 ,0 ,Lx g =

( )
1 1 ,0Rx g = at point 2 

 

(a)                                                                        (b) 

Fig. 10 Axial variations of variables for ( )
1 2 ,0 ,Lx g = ( )

1 2 , / 10Rx g  = with a time increment / 0.07st c L = of for 

half-period of oscillations for dimensionless time /st c L from 160 to the 161: (a) pressure 
0/p p ; (b) axial velocity 

component
1 1 0/u l  

 

movement of the two pressure drops along the duct (Fig. 

8(a)) is accompanied by a change the velocity 1 0/u l

along the coordinate 1x (
1 2 30 , , 0x L x x  = ) as 

presented in Fig. 9(a). The unification and merger of two 

pressure drops in the middle of the duct caused to a sudden 

spike in pressure in the form of delta-function. The change 

in velocity near this section of the duct at a given time has 

the highest quantity (Fig. 9b, line 2). The variation of 

velocity in the vicinity of this area of the tube at this time 

instant has the maximum value. Within the second half-

cycle of fluctuation, the slim area of excessive pressure 

begins to run away in the form of two pressure drop waves 

(Fig. 8(b)). The divergence of two differential pressures 

from the center of the pipe to the walls (Fig. 8(b)) leads to 

the dynamics of velocity distribution along the pipe axis 

similar to Fig. 9(a), except that the in this case the 

direction of movement of the narrow zones of the velocity 

drop  is reversed. In Fig. 9(b) the time history of the 

velocity 
1 1 0/u l on the dimensionless time /st c L for 

( )
1 2 ,0 ,Lx g = ( )

1 2 ,Rx g  = at point 3, and for 

( )
1 1 ,0 ,Lx g = ( )

1 1 , 0Rx g = at point 2 are shown.  

Influence of the phase shift during gas fluctuations in the  

tube in the system consisting of two excitation pistons, at 

the second harmonic results in resonance formation 

R = , and complete attenuation at 0R = , as illustrated 

in Fig. 7(a). The Fig. 10 presents the instantaneous 

waveforms of 
0/p p and 

1 1 0/u l  along the coordinate 

the coordinate 1x ( 
1 2 30 , , 0x L x x  = ) for one cycle 

of oscillations for corresponding time 160 to 161 with step

/ 0.07st c L = for ( )
1 2 ,0 ,Lx g = ( )

1 2 , /10 .Rx g  =

From the pressure distribution of Fig. 10(a) at /10R =  

along the pipe axis, it can be seen that the effect of the 

phase shift on the pressure allocation along the axis affects 

mainly only the reduction of the oscillation amplitude  
*

max min 0( )/p p p p = − during one period, with a 

pressure distribution similar to the pressure allocation at 

resonance, when two pressure waves converge in the 

middle of the pipe, and then, as a result of collision in the 

center of the pipe, the pressure waves diverge toward the  

ends of the tube. That is, when the phase shift changes, 

there is no strong variation in the structure of the steady 

state with time of a standing wave of oscillations of gas in 

the tube, but there is a decrease in the amplitude of 

oscillations. This is also confirmed by Fig. 10(b), where 

the distribution of particle velocities during one period of 

oscillation for the case ( )
1 2 ,0 ,Lx g = ( )

1 2 , /10Rx g  =  

are illustrated. The velocity allocation shows the same  
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(a)                                                                        (b) 

Fig. 11 Axial variations of pressure 
0/p p  for ( )1 4 ,0 ,Lx g = ( )1 4 ,Rx g  = along center line with a time increment of 

/ 0.02st c L = : (a) for first half-period of oscillations with dimensionless time  /st c L from 160 to the 160.25; (b) 

for second half-period of oscillations from time 160.25 to the 161.5 

 

 
(a)                                                                        (b) 

Fig. 12 Variations of axial velocity component 
1 1 0/u l along center line for ( )

1 4 ,0 ,Lx g = ( )
1 4 ,Rx g  = with a time 

increment of / 0.02st c L = for first half-period of oscillations with dimensionless time  /st c L  from 160 to the 

160.25; (b) time dependences 
1 1 0/u l  on the time  /st c L : 1- ( )

1 4 ,0 ,Lx g = ( )
1 4 ,Rx g  = at point 3, 2 - ( )

1 1 ,0 ,Lx g =

( )
1 1 ,0Rx g = at point 2 

 

dynamics as in Fig. 9 (a), with a region of decreasing 

velocity in the middle of the tube, only if in case of 

resonance this region with minimum velocities for 

different moments of time during the period of oscillations 

is clearly pronounced and is located in strictly small 

vicinity of the tube's center, here the area is greatly 

enlarged, but its location does not change. Note that Fig. 

10 is presented at a larger scale to more fully reflect the 

structure of the pressure and velocity curves, with the 

pressure drop 
*p  from 0.65 at resonance to 0.06 at

/10R = , and the velocity amplitude 
1 1 0/u l  from 

18.5 to 1.9.  

 c) Oscillations at high resonant frequencies 

3 4,L R   = = . Calculations carried out at higher 

harmonics 3 4( , )L R   = =  demonstrated that 

behavior of gas in the tube depending on phase shift 
R

in this case is similar to gas oscillations at lower 

frequencies depending on odd or even phase. The 

character of the oscillation amplitude as a function of R  

are similar for 1

L R  = = and 3

L R  = = , and for

2

L R  = = and 4

L R  = = respectively. The 

maximum resonance values of the vibration amplitude 

occur for odd harmonics, when the motion of the pistons 

occurs in the same phase ( 0)L R = = , and for even 

harmonics in anti-phase ( )L R  = = . In the dynamics of 

pressure allocation along the tube axis over time for higher 

harmonics we can distinguish similar areas with the 

behavior at lower harmonics. The Fig. 11 presents the 

instantaneous waveforms of 
0/p p  along the coordinate 

1x ( 
1 2 30 , , 0x L x x  = ) for one cycle of oscillations 

for corresponding time 160 to 
1

160
4

 with step

/ 0.02st c L = for ( )
1 4 ,0 ,Lx g = ( )

1 4 , .Rx g  =  The 

feature of the 
0/p p  distribution along the 1x  coordinate 

during the oscillation cycle for 4

L R  = = is that four 

weak shock waves propagate back and forth along the 

duct. Two high pressure zone propagates in forth direction, 

and two in reverse side during the first half cycle of the 

fluctuations period from 160 to 
1

160
4

 (Fig. 11(a)). For the 

second cycle of vibrations from time
1

160
4

 to
1

160
2

, the 

picture is slightly different in that, there are two areas of 

high pressure at the start of the report time (Fig. 11(b)) and 

waves are propagates in contrary side. The movement of 

the pressure drops along the duct Fig. 11(a)) is 

accompanied by a change in the velocity 
1 1 0/u l  along 

the coordinate 1x ( 
1 2 30 , , 0x L x x  = ) for one cycle 

of oscillations from 160 to
1

160
4

, as shown in Fig. 12(a). 

In Fig. 12(b) the time history of the velocity 
1 1 0/u l on the  
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Fig. 13 Dependence of the dimensionless pressure drop ( ) ( )
*

max min 0 0 1,4/ s iip p p l c  = = − from phase shift R when 

oscillating at different natural harmonics
i : 1-

1

L R  = = , 2-
2

L R  = = , 3-
3

L R  = = , 4-
4

L R  = =  

 

dimensionless time /st c L  for ( )1 4 ,0 ,Lx g =

( )1 4 ,Rx g  = at point 3, and for ( )1 1 ,0 ,Lx g =  

( )1 1 ,0Rx g = at point 2 are illustrated. The feature of the 

velocity allocation is the transition from sinusoidal forms 

of velocity variation over time at harmonic oscillations to 

almost rectangular forms, when the smooth alteration is 

replaced by a jump-shaped one with the presence of some 

smooth section to change the direction of velocity from 

positive to negative (Fig. 12(b)). Calculations carried out 

for the oscillations in the tube under the action of two 

pistons at the first resonance frequency 1

L R  = = and 

the second resonant frequency 2

L R  = = with phase 

shift step / 4  =  has shown, that for odd (first) 

frequency the resonance oscillations occur at the motion 

of pistons on same phase 0L R = = , and for the even 

frequency (second) the resonance oscillations come at 

motion in anti-phase 
L R  = = . Accordingly, for the 

first resonant frequency, the oscillations are damped at 

shift angles equal to , 1,1R k k = = − , and for the 

second at , 0, 2R k k = = . Similar behavior for the 

third and fourth resonant frequencies of pistons are 

observed. On Fig. 13 the dependence of dimensionless 

pressure ( )
*

max min /ip p p = − ( )0 0 1,4s il c  =
on the 

parameter
R for different natural frequencies of moving 

pistons , 1,..4L R

i i  = = = are shown. It is observed 

that the dependence of pressure drop on phase shift is 

parabolic character, it is clear that the first natural 

frequency of the 1

L R  = = (Fig. 13, curve 1) near 

resonance ( 0R = ) large differences in pressure are 

observed, but with the increase of the difference of phase 

shift occurs a sharp decrease in amplitude. Dependence of 

the relative dimensionless pressure drop 

( ) ( )
*

3 max min 0 0 3/ sp p p l c  = −  for frequency 

3

L R  = =  relative to 
R  is similar for

1

L R  = = , but since the pressure drop does change 

very little with increasing frequency, the value of 
*

3
p

decreases compared to
*

1
p . Similar behavior for the 

second and fourth resonant frequencies is observed. The 

graph in Fig. 13 illustrates that there is a phase shift of 
R  =  in the formation of resonant oscillations of the 

gas in the tube caused by the oscillations of the two pistons  

at the ends for the case of even and odd harmonics. The 

reason for this feature will be explained at the discussion 

of the behavior of the wave in the gas when it approaches 

the right piston and reflection from it as well as with an 

additional impulse effect due to its mobility. Similar 

reasoning in wave behavior is true for the left piston, but 

with a slight correction. The difference in the phase shift 

in the formation of the resonant oscillation in the tube 

under the influence of two pistons at the first and second 

natural frequency can be seen from the pressure 

distributions along the pipe axis for of one period of 

oscillations, presented in Fig. 6(a) and Fig. 8(a), 

respectively. Fig.6(a) shows that the pressure wave 

approaches the right piston when the pressure minimum is 

observed here relative to mean pressure along the tube, 

then as a result of reflection from the piston and obtaining 

additional momentum there is an increase of wave energy. 

It occurs because the forced frequency of the piston 

oscillation coincides with the frequency of the gas column 

oscillation both in frequency and phase. As a result, we 

obtain an increase in the amplitude of gas oscillation. In 

the case of even frequency, as illustrated by Fig. 8(a), we 

see in this case the wave approaches the right piston with 

maximum pressure relative to average pressure along the 

pipe, and in this case additional pressure impulse from the 

piston to the gas column receives only when the piston 

moves in anti-phase in comparison with the case for the 

first natural frequency. The similar reasons lead to the fact 

that the resonant oscillations for even and odd ones occur 

with a phase shift of for higher harmonics (the third and 

fourth). The reason for the weakening of oscillations, in 

the case of a phase shift on the right piston let us explain 

for the case of oscillations at the first natural frequency. In 
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this case, the wave reaches the right piston, since it has a 

phase shift of oscillation for the right piston / 4R  = , 

then the wave receives an additional impulse which does 

not coincide with the moment of reflection of the returning  

wave by some time interval, which leads to weakening of 

the additional energy to standing wave. Also, in the 

presence of a phase shift, the reflected and incident wave 

intersect, add up in amplitude, but this produces a standing 

wave of a smaller amplitude than at 0R = .The 

standing wave amplitude for / 4R  =  also increases 

with time, but the final steady-state amplitude value 

becomes smaller compared to 0R = , as the force of the 

additional pressure pulses from the moving pistons 

becomes weaker. In this case, the structure of velocity and 

pressure distribution for / 4R  = remains similar, 

compared to with the resonant case 0R = , but the 

amplitude of upgrade of pressure and velocity curves 

becomes smaller. A further increase in the phase shift leads 

to an additional weakening of the amplitude of gas 

oscillation in the pipe. In the case ( )
1 1 ,0 ,Lx g =

( )
1 1 ,Rx g  = the maximum decrease amplitude of gas 

oscillations as a result of the superposition of incident and 

reflected waves at the ends of the tube from the moving 

pistons. In this case, over time there is a monotonic 

decrease in the amplitude of oscillations, resulting in that 

the amplitude of gas oscillations inside the tube becomes 

smaller than the near the moving pistons. Note the 

nonlinear feature depending on the differential pressure 
*

ip from
R , which is expressed in the form of a 

parabolic dependence. At the initial stage variation of
R

pressure drop is insignificant, and when approaching to 

the value of
R  =  the gradient of the curve increases 

strongly. The calculations carried out to study the behavior 

of gas in the duct under impact of two pistons, oscillating 

at the same frequencies with phase shift showed that the 

amplitude of forced oscillations strongly depends on the 

value of phase shift. At certain values of the phase shift, 

nonlinear resonant oscillations develop, the magnitude of 

the phase shift are determined by the parity of the intrinsic 

harmonic value. In turn, there are values of the phase shift 

at which  natural frequency, as well as at higher harmonics 

are observed. Nonlinear properties of gas behavior at 

resonance oscillations coincide with the peculiarities 

manifested at forced classical gas oscillations in a tube 

under the impact of only one piston, only their 

manifestation is stronger. The similar nonlinear 

characteristics in the allocation of pressure and axial 

velocity along the center of duct found in (Gubaidullin & 

Snigerev, 2022) are confirmed. For these regimes in the 

velocity distribution along the tube center the amplitude of 

velocity change remains almost unchanged, only in this 

case with the passage of time there is a monotonic increase 

of the positive velocity of the pressure front movement on 

the one hand, and a decrease in the negative velocity 

behind the pressure front on the other hand. At the same 

time, at the moment of collision of these two pressure 

fronts, there is almost equality of gas velocities from the 

positive and negative sides of the pressure front, then there 

is the reorganization the direction of movement of the 

pressure drop to the opposite. This dynamics of the 

behavior of the velocities of gas particles it is caused by 

the movement of pressure fronts with approximately the 

same amplitude towards each other, but at the moment of 

their collision, pressure equalization occurs along the axis 

of the pipe and the presence of peak pressure surges, the 

number of which depends on the number of the resonant 

harmonic. The described resonant modes arise for certain 

values of the phase shift, and in other cases, the presence 

of a phase shift leads to a monotonous attenuation of 

oscillations for the case of equal values of the natural 

frequencies of the two pistons. 

3.2 Movement of Pistons at Different Natural 

Frequencies with Phase Shift 

a) The frequency of the left piston 1

L = , and the 

right 2,4 2 3 4, ,R

j   = = with phase shift .To reveal the 

action of the phase shift parameter 
R on the character 

of acoustic oscillations in the tube under the action of two 

pistons, calculations at different angular velocities of 

oscillations of the left and right piston, with phase 

variation for the right piston were carried out. For the 

option under consideration, the law of oscillation on the 

left piston is specified as ( )
1 1 ,0Lx g = . At the right end, 

the  p is ton  v ib ra tes  harmonica l ly  wi th  the  law 

( )
1 2,4 , ,R R R

jx g  == the 
R

j parameter takes the values

2 3 4, ,   . The phase shift is set only for the right 

piston, where the parameter 
R can take the following 

values 0, / 3, / 2,R

j   = . When the system performs 

the previously selected number of fluctuation cycles is 

not enough to establish a steady standing wave in the 

resonator with different piston frequencies. The time 

when the structure will make 170 fluctuation cycles (

/ 2 170st c L= ) is selected. The Fig. 14(a) shows the 

dynamics of pressures 
0/p p  in time at point 1 for of 

different piston oscillations at the frequencies 1 2,L R  : 

1- ( )
1 1 ,0 ,Lx g = ( )

1 2 , / 2Rx g  = (solid curve-1),  2-

( )
1 1 ,0 ,Lx g = ( )

1 2 , / 3Rx g  = (dashed curve-2),  3-

( )
1 1 ,0 ,Lx g = ( )

1 1 ,0Rx g = (dashed dot curve -3). In 

oscillations at different piston frequencies with a phase 

shift over time develops intense high amplitude periodic 

nonlinear oscillations, with formation of weak shock 

waves. The difference is that in this case, weaker shock 

waves are formed with a lower pressure jump, than at 

equal frequencies (Fig. 14(a), curve -3), but the difference 

between maximum and minimum pressure varies 

depending on the phase shift slightly (Fig. 14(a), curves -

1,2). For comparison the nonlinear resonance oscillations 

of gas in tube at the equal frequencies with value 1 , 

which is illustrated by Fig. 14(a) (dashed dot curve-3) are 

presented. The Fig. 14(b) presents the dynamics of the 

time setting of the axial velocity component 
1 1 0/u l at 

point 2 for a dimensionless time /st c L  for piston 

oscillations at angular frequencies 1 3,L R  :1 
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(a)                                                                        (b) 

Fig. 14 (a) Time dependences for 
0/p p at point 1 on the dimensionless time /st c L at piston vibrations at 

frequencies 
1 2,L R  :1- ( )

1 1 ,0 ,Lx g = ( )
1 2 , / 2Rx g  = , 2- ( )

1 1 ,0 ,Lx g = ( )
1 2 , / 3Rx g  = , 3- ( )

1 1 ,0 ,Lx g = ( )
1 1 ,0Rx g = ; 

(b) Time dependences of axial velocity 
1 1 0/u l at piston vibrations at frequencies: 1- ( )

1 1 ,0 ,Lx g = ( )
1 3 , / 2Rx g  =

, , 2- ( )
1 1 ,0 ,Lx g = ( )

1 3 , / 3Rx g  = , 3 - ( )
1 1 ,0 ,Lx g = ( )

1 1 ,0Rx g =  

 

 
(a)                                                                        (b) 

Fig. 15 Fast Fourier transform of the time dependence of the pressure signal
0/p p  at the point 1(

1 / 0.02x L= ) for 

the various laws of movement of pistons: (a) ( )
1 1 ,0 ,Lx g = ( )

1 2 , / 2Rx g  = ; (b) ( )
1 1 ,0 ,Lx g = ( )

1 3 , / 3Rx g  =  

 

- ( )
1 1 ,0 ,Lx g =  ( )

1 3 , / 2Rx g  = , (solid curve-1), 2-

( )
1 1 ,0 ,Lx g =  ( )

1 3 , / 3Rx g  = (dashed curve-2), 3-

( )
1 1 ,0 ,Lx g = ( )

1 1 ,0Rx g = (dash dot curve-3 ). It can 

be viewed that the behavior of gas oscillations at different 

natural frequencies and the presence of phase shift is 

characterized by nonlinear oscillations of the gas, the 

maximum amplitude of particle velocity fluctuations does 

not decrease, but the value of the jump in velocity at the 

moments of the shock wave passes becomes less. The 

Fig. 15 shows a FFT of 
0/p p in time for fluctuations of 

gas in the tube under the action of two pistons for two 

variants of the laws of motion: (a) 1- ( )
1 1 ,0 ,Lx g =

( )
1 2 , / 2Rx g  = ; ( b ) ( )

1 1 ,0 ,Lx g =  ( )
1 3 , / 3Rx g  = . 

It can be seen that for the case when the left piston 

vibrates at the first natural frequency 1

L = , and the 

right one at higher eigenvalues 2

R

j = ,then in the tube 

over time intense high amplitude periodic nonlinear 

oscillations are established, characterized by the fact, that 

in the spectrum of frequencies of pressure dynamics is 

dominated by the first natural frequency (Fig. 15(a)). In 

case of further increase the natural frequency of the right 

piston 3 4,R

j  = ,  in  the frequency spectrum of 

pressure,  the values of the amplitudes of higher 

frequencies increase (Fig. 15(b)).  

 b) The frequency of the left piston 2,3 2 3,L

j  = = , and 

the right 3,4 3 4,R

j  = = with phase shift. Dynamics of 

pressure and velocity distribution during gas fluctuations 

in tube under the influence of two pistons at higher 

frequencies for one period of oscillation differs little from 

the case at the first resonant frequency for the left piston 

with a variation of frequency on the right piston. The 

calculations performed for the selected four phase shift 

values demonstrate, that in this case there is no significant 

decrease in oscillations depending on the phase shift and 

frequency change. Over time, high amplitude periodic 

nonlinear oscillations of the gas under the action of two 

pistons are established, oscillating at different natural 

frequencies with a phase shift. The Fig. 16(a) presents 

dynamics of pressures 
0/p p  in time at point 1 for of 

different piston oscillations on the frequencies 2 3,L R 

:1- ( )
1 2 ,0 ,Lx g = ( )

1 3 , / 2Rx g  = ,(solid curve -1), 2- 

( )
1 2 ,0 ,Lx g = ( )

1 3 ,Rx g  = ( d a s h e d  c u r v e - 2 ) ,  3 -

( )
1 2 ,0 ,Lx g =  ( )

1 2 ,Rx g  = (dash dot curve-3 ). The 

Fig. 16(b) illustrates the dynamics of the time setting of 

the 
1 1 0/u l  at point 3 for a dimensionless time /st c L

for piston oscillations at frequencies :  1- ( )
1 3 ,0 ,Lx g =

( )
1 4 , / 2Rx g  = ,  (solid  curve-1),  2- ( )

1 3 ,0 ,Lx g =   
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(a)                                                                        (b) 

Fig. 16 (a) Time dependences for 
0/p p at point 1 on the dimensionless time /st c L  at piston vibrations at 

frequencies
2 3,L R  :1- ( )

1 2 ,0 ,Lx g = ( )
1 3 , / 2Rx g  = , 2- ( )

1 2 ,0 ,Lx g = ( )
1 3 ,Rx g  = , 3- ( )

1 2 ,0 ,Lx g = ( )
1 2 ,Rx g  = ; 

(b) Time dependences of axial velocity 
1 1 0/u l  at frequencies

3 4,L R  :1- ( )
1 3 ,0 ,Lx g = ( )

1 4 , / 3Rx g  = , , 2- 

( )
1 3 ,0 ,Lx g = ( )

1 4 , / 2Rx g  = , 3- ( )
1 3 ,0 ,Lx g = ( )

1 3 ,0Rx g =  

 
(a)                                                                        (b) 

Fig. 17 Fast Fourier transform of the time dependence of the pressure signal
0/p p at the point 1 (

1 / 0.02x L=  ) for 

the various laws of movement of pistons: (a) ( )
1 2 ,0 ,Lx g = ( )

1 3 , / 2Rx g  = ; (b) ( )
1 3 ,0 ,Lx g = ( )

1 4 , / 3Rx g  =  

 

( )
1 4 , / 3Rx g  = (dashed curve -2), 3- ( )

1 2 ,0 ,Lx g =

( )
1 2 ,Rx g  = (dash dot curve-3). The Fig. 17 shows a 

FFT of the 
0/p p  in time for fluctuations of gas in the 

tube under the action of two pistons for two variants of 

the laws of motion: (a) ( )
1 2 ,0 ,Lx g = ( )

1 3 , / 2Rx g  =

; ( b )  ( )
1 3 ,0 ,Lx g = ( )

1 4 , / 3 .Rx g  = I n  t h e  c a s e  o f 

oscillations at higher frequencies, some features appears 

in the case, when both pistons operate at even frequencies. 

In this case, gas oscillations with a large ampl itude 

develop in the pipe over time, and only even harmonics 

are present in the pressure frequency spectrum
0/p p . In 

the event of higher frequencies ( 3 4,R  = ), in the 

tube regardless of the value of the phase shift h igh-

amplitude oscillations are formed, in the pressure 

spectrum 
0/p p all harmonics are present, the amplitudes 

of which may have different (not necessarily decreasing) 

values. The calculations carried out to study the behavior 

of gas in a pipe under the influence of two pistons 

oscillating at different frequencies with a phase shift 

showed that the amplitude of the forced oscillations does 

not depend much on the value of the phase shift
R . In 

the selected range of changes in the phase shift 
R of the 

right piston, calculations have shown, that there is no any 

attenuation of fluctuations over time are observed. The 

effect of the phase shift 
R in gas oscillations in a system 

consisting of two excitation pistons, at different 

frequencies does not lead to a significant decrease in the 

amplitude of the steady-state gas oscillations in the tube. 

The Fig. 18 demonstrates the more detail distributions of 

the gas 
0/p p  and 

1 1 0/u l  along the duct for one cycle 

of  f luctuations with motion of  pistons with law 

( )
1 3 ,0 ,Lx g =  ( )

1 4 , / 3 .Rx g  =  From the f igure of 

pressure allocation we see that in the steady-state mode 

of oscillations in the tube, although the pistons move at 

the second and third harmonics, for one period of steady 

state of periodic oscillations in the tube moves only one 

jump of pressure, which amplitude is lower than for 

resonance case. Which indicates that the predominant 

time-varying signal alteration for pressure is the first 

frequency, on which the pressure changes at higher 

harmonics are superimposed. The velocity allocation 

curves also show that along the axis is closer to in 

structure to oscillations at the first resonant frequency, 

characterized by the presence of only one maximum 

velocity value along the tube axis. From the pressure 

distribution we can see that the first frequency is the 

predominant in the frequency spectrum of the pressure 

signal, which is presented in Fig. 15 and Fig. 17, obtained 

using the fast Fourier transform. But at some moments of 

time for the period the pressure decrease along the axis is 

equal in amplitude to the pressure drop for the resonant 

case (for equal frequencies of pistons), therefore the 

amplitudes of changes of velocity of gas particles are also 

close to the resonant ones. The difference of pressure 

distributions for the case of gas oscillations at different  
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(a)                                                                        (b) 

Fig. 18 Axial variations of variables for ( )
1 3 ,0 ,Lx g = ( )

1 4 , / 3Rx g  = with a time increment of / 0.08st c L =

for period of oscillations for dimensionless time /st c L from 341 to the 342: (a) pressure
0/p p ; (b) axial velocity 

component 
1 1 0/ .u l  

 

frequencies is that the significant pressure drop is 

distributed more uniformly along the entire length of the 

pipe, leading to the fact that maximum velocities at some 

moments of time are also observed in the pipe region, but 

the gradient of velocity alteration along the length varies 

smoothly. Similar pressure and velocity allocations are 

observed for all selected discrete values. The same 

pressure and velocity allocations are observed for all 

selected discrete phase shift values, which leads to the 

fact that over time for all values of 
R  the significant 

oscillations of the gas in the tube with a complex standing 

wave form are established. The reason that the oscillation 

of the gas in the tube under the influence of two pistons, 

oscillating at different natural frequencies does not lead 

to noticeable damping of oscillations, it that the incident 

waves of longer length are reflected from the right piston, 

oscillating at a higher frequency with a phase shift. The 

additional pulses from the right-hand piston, however, 

lead to the formation of waves of shorter length, which 

intersect and add up with waves of larger length with a 

phase shift, but eventually the interference of waves leads 

to amplification of longer waves. Over time, regardless of 

the value of the phase shift at the higher frequency piston, 

as a result of interference there is an increase of amplitude 

of longer waves and formation of a standing wave with 

high amplitude in oscillations of gas in the pipe.  

4. CONCLUSION 

The nonlinear effects in fluctuations of gas in duct 

forced by two pistons at first and higher modes with phase 

shift are observed. The analysis of the calculations of a 

resonator excited by two pistons oscillating at different 

natural frequencies and having a phase shift has 

demonstrated, that the effect of phase shift changes on the 

character of acoustic oscillations has some characteristic 

features. The effect of the phase shift value has a strong 

effect on the oscillation amplitude at pistons oscillating at 

equal natural frequencies, in turn, when the pistons 

oscillate at different natural frequencies, the effect is very 

small. The dependence of dimensionless maximum 

pressure drop amplitude on phase shift at pistons operation 

at equal frequencies has a parabolic character, at that, with 

the increase of frequency of piston motion the gradient of 

the curve of dependence the difference pressure from the 

phase shift decreases, and the radius of curvature of the 

parabolic curve increases and it becomes smoother. Also 

in the tube there are forced gas oscillations of large 

amplitude leading to weak shock waves at operation of 

pistons at equal natural frequencies in one phase at odd 

values of harmonics, and in operation in anti-phase at even 

values of harmonics. The influence of phase shift in the 

movement of pistons at equal frequencies also manifested 

in the fact, that at certain values of the phase shift there is 

a strong attenuation of the oscillations. Numerical analysis 

illustrated that induced acoustic vibrations in the tube 

during the operation of two pistons oscillating on different 

phase-shift frequencies are characterized by significant 

amplitudes of pressure and velocity drops, values of which 

differ from resonant values at equal frequencies not more 

than 6-9 % percent. In the considered variants of 

calculations, when varying natural frequencies and phase 

shifts, no cases with significant attenuation of oscillations 

are observed. 
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