Bardina, J. E., Huang, P. G., & Coakley, T. J. (1997). Turbulence modeling validation, testing, and development. No. A-976276.
Benton, J., Kalitzin, G., & Gould, A. (1996).
Application of two-equation turbulence models in aircraft design. 34th Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.1996-327
Błazik‐Borowa, E. (2008). The analysis of the channel flow sensitivity to the parameters of the k–ε method
. International Journal for Numerical Methods in Fluids, 58, 1257-1286.
https://doi.org/10.1002/fld.1808
Błazik-Borowa, E. (2012). The application example of the sensitivity analysis of the solution to coefficients of the k-ε model.
Budownictwo i Architektura, 10, 53-68.
https://doi.org/10.35784/bud-arch.2230
Bottema, M. (1997). Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence.
Journal of Wind Engineering and Industrial Aerodynamics, 67, 897-908.
https://doi.org/10.1016/S0167-6105(97)00127-X
Chen, Y. S., & Kim, S. W. (1987). Computation of turbulent flows using an extended k-epsilon turbulence closure model. No. NAS 1.26, 179204.
Choi, S. W., & Kim, H. S. (2020). Predicting turbulent flows in butterfly valves with the nonlinear eddy viscosity and explicit algebraic Reynolds stress models.
Physics of Fluids, 32, 085105.
https://doi.org/10.1063/5.0006896
Choi, S. W., Seo, H. S., & Kim, H. S. (2021). Analysis of flow characteristics and effects of turbulence models for the butterfly valve.
Applied Sciences, 11, 6319.
https://doi.org/10.3390/app11146319
Colin, E., Etienne, S., Pelletier, D., & Borggaard, J. (2005). Application of a sensitivity equation method to turbulent flows with heat transfer.
International Journal of Thermal Sciences, 44, 1024-1038.
https://doi.org/10.1016/j.ijthermalsci.2005.04.002
Del Toro, A., M. C. Johnson, & R. E. Spall (2015). Computational fluid dynamics investigation of butterfly valve performance factors.
Journal-American Water Works Association, 107.5, E243-E254.
https://doi.org/10.5942/jawwa.2015.107.0052
Du, X., & Gao, S. (2013). Numerical study of complex turbulent flow through valves in a steam turbine system.
International Journal of Materials, Mechanics and Manufacturing, 1, 301-305.
https://doi.org/10.7763/IJMMM.2013.V1.65
Hrenya, C. M., Bolio, E. J., Chakrabarti, D., & Sinclair, J. L. (1995). Comparison of low Reynolds number k− ε turbulence models in predicting fully developed pipe flow.
Chemical Engineering Science, 50, 1923-1941.
https://doi.org/10.1016/0009-2509(95)00035-4
Kok, J. C. (2000). Resolving the dependence on freestream values for the k-turbulence model.
AIAA Journal, 38, 1292-1295.
https://doi.org/10.2514/2.1101
Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc.
Letters In Heat and Mass Transfer, 1, 131-137.
https://doi.org/10.1016/0094-4548(74)90150-7
Launder, B. E., & Spalding, D. B. (1972). Lectures in mathematical models of turbulence.
Lin, C. H., Yen, C. H., & Ferng, Y. M. (2014). CFD investigating the flow characteristics in a triangular-pitch rod bundle using Reynolds stress turbulence model.
Annals of Nuclear Energy, 65, 357-364.
https://doi.org/10.1016/j.anucene.2013.11.023
Lisowski, E., & Rajda, J. (2013). CFD analysis of pressure loss during flow by hydraulic directional control valve constructed from logic valves.
Energy Conversion and Management, 65, 285-291.
https://doi.org/10.1016/j.enconman.2012.08.015
Ogawa, K., & Kimura, T. (1995). Hydrodynamic characteristics of a butterfly valve—prediction of torque characteristics. ISA Transactions, 34, 327-333.
Prieler, R., Demuth, M., Spoljaric, D., & Hochenauer, C. (2015). Numerical investigation of the steady flamelet approach under different combustion environments.
Fuel, 140, 731-743.
https://doi.org/10.1016/j.fuel.2014.10.006
Said, M. M., AbdelMeguid, H. S., & Rabie, L. H. (2016). The accuracy degree of CFD turbulence models for butterfly valve flow coefficient prediction.
American Journal of Industrial Engineering, 4, 14-20.
https://doi.org/10.12691/ajie-4-1-3
Sarkar, A., & So, R. M. C. (1997). A critical evaluation of near-wall two-equation models against direct numerical simulation data.
International Journal of Heat and Fluid Flow, 18, 197-208.
https://doi.org/10.1016/S0142-727X(96)00088-4
Shih, T. H. (1990). An improved k-epsilon model for near-wall turbulence and comparison with direct numerical simulation. No. NAS 1.15, 103221.
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows.
Computers & Fluids, 24, 227-238.
https://doi.org/10.1016/0045-7930(94)00032-T
Sun, X., Kim, H. S., Yang, S. D., Kim, C. K., & Yoon, J. Y. (2017). Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve.
Journal of Mechanical Science and Technology, 31, 2839-2848.
https://doi.org/10.1007/s12206-017-0527-0
Wang, P., & Liu, Y. (2017). Unsteady flow behavior of a steam turbine control valve in the choked condition: Field measurement, detached eddy simulation and acoustic modal analysis.
Applied Thermal Engineering, 117, 725-739.
https://doi.org/10.1016/j.applthermaleng.2017.02.087
Williams, S., Trembley, J., & Miller, J. P. Flow Monitoring using flow control device. U.S. Patent No. 7,092,797, 15 August 2006.
Wu, D., Li, S., & Wu, P. (2015). CFD simulation of flow-pressure characteristics of a pressure control valve for automotive fuel supply system.
Energy Conversion and Management, 101, 658-665.
https://doi.org/10.1016/j.enconman.2015.06.025
Zeng, L., Liu, G., Mao, J., Yuan, Q., Wang, S., Wei, L., & Wang, Z. (2015). A novel numerical simulation method to verify turbulence models for predicting flow patterns in control valves.
Journal of Fluid Science and Technology, 10, JFST0007-JFST0007.
https://doi.org/10.1299/jfst.2015jfst0007