Anzalotta, C., Joshi, K., Fernandez, E., & Bhattacharya, S. (2020). Effect of forcing the tip-gap of a NACA0065 airfoil using plasma actuators: A proof-of-concept study.
Aerospace Science and Technology, 107, 106268.
https://doi.org/10.1016/j.ast.2020.106268
Belamadi, R., Djemili, A., Ilinca, A., & Mdouki, R. (2016). Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades.
Journal of Wind Engineering and Industrial Aerodynamics, 151(4), 79-99.
https://doi.org/10.1016/j.jweia.2016.01.011
Bhattacharya, S., & Gregory, J. W. (2015). Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator.
Physics of Fluids, 27(1), 014102.
https://doi.org/10.1063/1.4905536
Counsil J. N. N. & Boulama, K. G. (2013). Low-reynolds-number aerodynamic performances of the NACA 0012 and selig–donovan 7003 airfoils.
Journal of Aircraft, 50(1), 204-216.
https://doi.org/10.2514/1.C031856
Fouatih, O. M., Medale, M., Imine, O., & Imine, B. (2016). Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators.
European Journal of Mechanics-B/Fluids, 56, 82-96.
https://doi.org/10.1016/j.euromechflu.2015.11.006
Genc, M. S., Özışık, G., & Kahraman, N. (2008). Investigation of aerodynamics performance of NACA0012 aerofoil with plain. Journal of Thermal Science and Technology, 28 (1) 1-8. ISSN 1300-3615.
Gerakopulos, R., Boultilier, M., & Yarusevych, S. (2010).
Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds number. 40th Fluid Dynamics Conference and Exhibit America Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2010-4629
Guoqiang, L., Weiguo, Z., Yubiao, J., & Pengyu, Y. (2019). Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator.
Energy, 185, 90-101.
https://doi.org/10.1016/j.energy.2019.07.017
He, X., Wang, J., Yang, M., Ma, D., Yan, C., & Liu, P. (2016). Numerical simulation of Gurney flap on SFYT15thick airfoil.
Theoretical and Applied Mechanics Letters, 6(6), 286-292.
https://doi.org/10.1016/j.taml.2016.09.002
Jawahar, H. K., Ai, Q., & Azarpeyvand, M. (2018). Experimental and numerical investigation of aerodynamic performance for airfoils with morphed trailing edges.
Renewable Energy, 127, 355-367.
https://doi.org/10.1016/j.renene.2018.04.066
Koca, F., & Ozturk, A. (2022). Experimental investigation of the effect of a semi-circular spiral protrusion on the turbulent flow past a cylinder.
Fluid Dynamics, 57, 371–386.
https://doi.org/10.1134/S0015462822030089
Luo, D., Huang, D., & Sun, X. (2017). Passive flow control of a stalled airfoil using a microcylinder.
Journal of Wind Engineering and Industrial Aerodynamics, 170, 256-273.
https://doi.org/10.1016/j.jweia.2017.08.020
Orabi, M. Y. A., Elbaz, A. M. R., Mahmoud, N. A. & Hamed, A. M. (2020). Computational modeling of transitional flow over NACA-0018 airfoil at low Reynolds Number. International Journal of Advance Research, Ideas and Innovations in Technology, 6(6), 241-265.
Olsman, W. F. J., Willems, J. F. H., Hirschberg, A., Colonius, T., & Trieling, R. R. (2011). Flow around a NACA0018 airfoil with a cavity and its dynamical response to acoustic forcing.
Experiments in Fluids, 51, 493–509.
https://doi.org/10.1007/s00348-011-1065-7
Ozturk, A., & Coban, M. (2014). Experimental investigation of the effect of the vortex trap on an airfoil profile on flow structure, V. National Aeronautics and Space Conference, 069, 1-14.
Rubel, R. I., Uddin, K., Islam, Z., & Rokunuzzaman, M. D. (2017). Numerical and experimental investigation of aerodynamics characteristics of NACA 0015 aerofoil.
International Journal of Engineering Technologies IJET, 2(4), 132-141.
https://doi.org/10.19072/ijet.280499
Sreejith, B. K., & Sathyabhama, A. (2018). Numerical study on effect of boundary layer trips on aerodynamic performance of E216 airfoil.
Engineering Science and Technology, an International Journal, 21(1), 77-88.
https://doi.org/10.1016/j.jestch.2018.02.005
Sun, Z., Mao, Y., & Fan, M. (2021). Performance optimization and investigation of flow phenomena on tidal turbine blade airfoil considering cavitation and roughness.
Applied Ocean Research, 106, 102463-102479.
https://doi.org/10.1016/j.apor.2020.102463
Tanürün, H. E., Ata, İ., Canlı, M. E. & Acır, A. (2020). Numerical and experimental investigation of NACA-0018 wind turbine aerofoil model performance for different aspect ratios.
Journal of Polytechnic, 23(2), 371-381.
https://doi.org/10.2339/politeknik.500043
Wang, J., Zang, C., Wu, Z., Wharton, J., & Luquan, R. (2017). Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures.
Journal of Sound and Vibration, 394, 46-58.
https://doi.org/10.1016/j.jsv.2016.11.021
Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models,
AIAA Journal, 26(11), 1299-1310.
https://doi.org/10.2514/3.10041
Yadav, R., & Bodavula, A. (2021). Numerical investigation of the effect of triangular cavity on the unsteady aerodynamics of NACA 0012 at A low reynolds number.
Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, 236(6), 1-17.
https://doi.org/10.1177/09544100211027042
Yang, Y., Li, C., Zhang, W., Guo, X., & Quanyong, Y. (2017). Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil.
Journal of Mechanical Science and Technology 31, 1645–1655.
https://doi.org/10.1007/s12206-017-0312-0
Zhang, X., Wang, G., Zang, M., Liu, H., & Li, W. (2017). Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height.
International Journal of Hydrogen Energy, 42 (29), 18252-18262.
https://doi.org/10.1016/j.ijhydene.2017.04.158