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ABSTRACT 

In this study we examine the flow of inelastic fluids with various shear properties 

in axisymmetric contractions with various contraction ratios are selected as 4:1, 

6:1 and 8:1 with both rounded-corner and sharp. Particular attention is paid to 

the effect of shear thickening and shear thinning  upon the solution behavior. 

Power-law inelastic model is employed coupling with the conservation of 

momentum equation  and continuity equation . The numerical simulation of such 

fluid is performed by using the Taylor Galerkin pressure correction (T-G/P-C) 

finite element algorithm.  The effects of geometry structure and many factors 

such as Reynolds number (Re) and the parameters of power law model are 

presented in this study. Particularly, in this study we are focused on the influence 

of these factors on the solution components and the level of convergence. This 

research was a comparative study between sharp and rounded-corner contraction 

geometries with a ratio of 4:1, and to another comparative study among sharp 

contraction geometries with ratios of 4:1, 6:1, and 8:1. The practical implications 

of this study focused on vortex length and the impact of varying the parameters 

of the power law model and the Reynolds number (Re) on it for 4:1 contraction 

flow.  The study dealt with the effect of different geometries on the rates of 

convergence of velocity and pressure as well as the characteristics of axial 

velocity and pressure on the axis of symmetry. 
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1. INTRODUCTION 

 A wide variety of contraction flows, both Newtonian 

and non-Newtonian which do not fulfll Newton’s law of 

viscosity (see Tanner, 2000)., have been studied in depth, 

including 4:1 flows, see (Sharhanl & Al-Muslimawi, 

2021) and (Ferrás et al., 2014), 6:1 flows, see (Blanco et 

al., 2019) and (Agelinchaab & Tachie, 2006), and 8:1 

flows, see (Haward et al., 2010) and (Lanzaro & Yuan, 

2011). Ink-jet printing, fiber-spinning, porous-media 

flows, blood circulation, and mucin-solution flows in the 

lungs represent examples of the many fields that use of 

inelastic fluid flows via contraction geometries. For this 

type of fluids, the continuity equation for the conservation 

of mass and the time-dependent equation for the 

conservation of momentum represent the principle 

equations (Galdi, 2011) . Additionally, the relationship 

between the shear rate and the shear stress inside these 

fluids may be defined as nonlinear. Thus and for this 

purpose It is necessary to employ the constitutive 

equations to treat the non-linearity behavior of shear 

stress. The Binding model, Bird-Carreau, modified power 

law, Herschel-Bulkley model, cross model, Carreau 

model, Carreau-Yasuda model, and Modified Casson 

model are only a few examples of models for these 

constitutive equations, (Bharti et al., 2022), (Karimi et al., 

2014), (Carer et al., 2021), (Boyd et al., 2007) and 

(Liepsch et al., 2018) . But one of the most well-known is 

the power law (shear-thinning, shear-thickening) model 

(Graham & Jones, (1994), which is represented by:    𝜇 =

𝑘 (𝛾)̇ 𝑛−1, 

 where n is a power-law index, k is a consistency 

parameter and 𝛾1̇ is a shear rate function dependent on 

second invariant (𝐼𝐼𝑑),  (Sharhanl & Al-Muslimawi, 2021) 

and (Bharti et al., 2022). In order to handle the continuity 

and momentum equations, a Taylor Galerkin Pressure 

Correction finite element method (T-G/P-C) is used in this 

issue under isothermal conditions with no consideration of 

body forces. A time stepping Taylor Galerkin pressure 

correction scheme (T-G/P-C) is an essential numerical 

approach inside the finite element framework (Hawken et 

al., 1990), for more details see Belblidia et al. (2003). The 

Taylor–Galerkin technique and the pressure- 

correction method are the two essential components that  
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NOMENCLATURE 

u velocity   ̇γ  shear rate in non-dimensional form 

p pressure   ̇ϵ  strain rate  

𝜇  viscosity in non-dimensional form  𝐼𝐼𝑑 second invariant  

𝜇1 viscosity in dimensional form  𝐼𝐼𝐼𝑑 third invariant  

𝜇2 refrence values of viscousity   θ  Crank-Nicolson parameter 

ρ  density   k consistency parameter in non-dimensional form 

n power law index  𝑘1 consistency parameter in dimensional form 

𝛾1̇ shear rate in dimensional form  𝑘2 refrence values of share rate 

𝛾2̇ refrence values of share rate  Re Reynolds number  

d deformation rate   𝑑𝑧 vortex length 

 

make up this strategy. The Taylor–Galerkin method is a 

two-step Lax-Wendroff time incremental method 

(expectation corrector), which is essential dependent on a 

Taylor series expansion in time see (Alzahrani et al., 

2020). In order to guarantee second-order precision in 

time, the pressure-correction approach takes the 

incompressibility restriction into account. In the present 

work, sets of differential equations are solved using a 

time-stepping Taylor Galerkin pressure correction finite 

element technique (T-G/P-C). The method is used with FE 

meshes that are triangular in shape, with velocity 

components at all node vertices and mid-side nodes and 

pressure nodes at the mid-side nodes. A given domain is 

treated as a collection of subdomains in the finite element 

approach, and the governing equation is approximated 

over each subdomain by any of the classic variation 

methods or any acceptable method (Reddy, 2019). The 

inelastic fluid flow through the contraction channels 

causes turbulence zones within the flow channel. The idea 

of turbulence may be thought of as a tangled web of vortex 

filaments, and a significant portion of the physics of 

turbulence can be adequately described by using the 

principles of vortex dynamics. A vortex is an area in fluid 

dynamics where the flow spins around a straight or curved 

placebo axis. Although the idea of vortices has been 

around for as long as the study of hydrodynamics, there 

has never been a consensus on what exactly a vortex is 

(Jeong, & Hussain, 1995).  We focused on  the effects of 

geometry variation, the power law consistency parameter 

(𝑘), the power law index (n) and (Re) on vortex length for 

4:1 contraction flow. The streamwise separation between 

the cylinder's rear stagnation point and contraction wall, 

often abbreviated as 𝑑𝑧, is known as the vortex length 

(Karlson et al., 2020).  

The novelty in this study is the comparison and study 

of the behavior of inelastic fluids for 4:1, 6:1 and 8:1 

contraction flows. Also study the behavior of velocity and 

pressure on the axisymmetric line of the channel flow. 

Another feature of the novelty of this study was using 

Taylor-Glerkin / Pressure-Correction finite element 

method(T-G/P-C)  in power law inelastic fluid flow in 

contraction channel.   

The following is a summary of the study. Problem 

specification and boundary conditions have been 

described in Section 2. Mathematical modelling is 

discussed in Section 3. The discussion then moves on to 

Section 4, where a numerical technique is presented. In 

Section 4, the algorithm is used to describe and illustrate 

the numerical technique.. Finally, the results and 

conclusions are presented clearly in Sections 5 and 6. 

2. PROBLEM SPECIFICATION AND 

BOUNDARY CONDITION 

As a starting point for this investigation, we consider 

the flow of an isothermal inelastic fluid through a two-

dimensional axisymmetric channel with 4:1 rounded-

corner contraction, 4:1 sharp contraction, 6:1 sharp 

contraction and 8:1 sharp contraction. In all geometries the 

widths of the main section are respectively, 4, 4, 6 and 8 

units and the width of contraction section for all 

geometries 1 unit, (for more details, see Fig. 1). The 

domain of the flow is split into triangular elements, and 

those elements make up the mesh of geometry (see Fig. 2). 

The characteristics of the finite element meshes used in 

our research are outlined in Table 1 which obtained by 

split the domain to these number of elements and 

generated the mesh. 

Boundary conditions (BCs): The configuration of the 

BCs ie presented as follows: 

(a) Poiseuille (Ps) flow (𝑢𝑧 = 𝑢𝑚𝑎𝑥(1 −
𝑟2

𝑅2), R=inlet 

diameter)  is applied at the inlet and vanishing radial 

velocity.  

(b) No-slip boundary conditions at the wall are enforced. 

(c) There is no pressure and free axial velocity being 

exerted at the outflow of the channel, also no radial 

velocity in the axisymmetric line. 

We intended that the length of the main section of the 

channel (𝐿𝑤) be longer than the contraction section of the 

channel (𝐿𝑐). So that the length of the main section is 

greater than twice the length of the contraction section. 

Figure 1 provides an explanation for each of the 

aforementioned aspects of boundary conditions, such that 

𝐶𝑟 =
𝐷

𝐷𝑐
= 4/1, where 𝐶𝑟 denoted contraction ratio and 

other dietials of boundaries find it in Table 2 

3. MATHEMATICAL MODELING 

The governing equations for incompressible inelastic 

flow under isothermal conditions when body forces are 

disregarded consist of the continuity and momentum   

equations. These equations are defined as follows: 
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(a) 

 
(b) 

Fig. 1 Flow geometry (a) 4:1 rounded-corner  contraction (b) 4:1 sharp contraction 

 

 
(a) 

 
(b) 

Fig. 2 Structured finite element meshes (a) 4:1 rounded-corner contraction (b) 4:1 sharp contraction 
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Table 1 Statistically of meshes elements 

Mesh Total Elements Total Nodes Boundary Nodes Pressure Nodes 

4:1rounded-contraction 1192 2438 268 642 

4:1 sharp contraction 1128 2387 244 639 

6:1 sharp contraction 1640 3419 276 890 

8:1 sharp contraction 2152 4460 308 1154 

 

Table 2  Statistically of boundaries and diametrs 

length 

𝐿 𝐿𝑤 𝐷 𝐿𝑐 𝐷𝑐 

14 10 4, 6, 8 4 1 

 

∇ ⋅ 𝑢 = 0,                                                                                   (1) 

𝜌 (
∂𝑢

∂𝑡
+ 𝑢 ⋅ ∇𝑢) = −∇𝑝 + ∇ ⋅ (2𝜇(�̇�, 𝜀)𝑑),                      (2) 

see (Aboubacar et al., 2002), where u, 𝜌, p, and 𝜇 are 

represent the velocity, density, hydrodynamic pressure, 

and viscosity respectively. Also the rate of deformation is 

denoted by 𝑑 =
1

2
(∇𝑢 + ∇𝑢𝜏), while the derivative 

operator is denoted by ∇. Additionally, the symbols 𝜀1̇ and 

𝛾1̇ stand for the strain and shear rates of extensional flow 

and shear flow, respectively, such that: 

𝛾1̇  = 2√𝐼𝐼𝑑

 𝜀1  = 3
𝐼𝐼𝐼𝑑

𝐼𝐼𝑑

⋅                                                                                    (3) 

In an axisymmetric coordinate system, the second and 

third invariants of the shear rate and rate of strain tensor 

can be defined as follows (Yasir et al., 2020):  

𝐼𝐼𝑑 =
1

2
tr (𝑑2) =

1

2
{(

∂𝑢𝑟

∂𝑟
)

2

+ (
∂𝑢𝑧

∂𝑧
)

2

+ (
𝑢𝑟

𝑟
)

2

+
1

2
(

∂𝑢𝑟

∂𝑧
+

∂𝑢𝑧

∂𝑟
)

2

},                                                                              (4) 

𝐼𝐼𝐼𝑑 = det (𝑑) =
𝑢𝑟

𝑟
{

∂𝑢𝑟

∂𝑟

∂𝑢𝑧

∂𝑧
−

1

4
(

∂𝑢𝑟

∂𝑧
+

∂𝑢𝑧

∂𝑟
)

2

}.              (5) 

Furthermore, the scaling may be used to establish the 

Reynolds number 𝑅𝑒 = 𝜌
𝑈𝐿

𝜇
 with non-dimensions, where 

U, L, and 𝜌 are the velocities, lengths, and densities, 

respectively. In this particular case, the equation for the 

non-dimensional momentum of a general Newtonian fluid 

may be stated as follows (see (Aboubacar et al., 2002)): 

∂𝑢

∂𝑡
=

1

𝑅𝑒
[∇ ⋅ (2𝜇𝑑) − 𝑅𝑒 𝑢 ⋅ ∇𝑢 − ∇𝑝].                               (6) 

In this research, the power-law model is applying to 

illustrate this study where power-law model in 

dimensional form is; 

 𝜇1 = 𝑘1(𝛾1)̇ 𝑛−1.                                                               (7) 

For  𝜇2,  𝑘2, and 𝛾2̇ are denoted the refrence values of 

viscosity, consistency parameter and shear rate, 

respectively, then the power law model in non-dimesional 

form as (see Thohura, S. et al, 2019): 

 
 𝜇1

𝜇2
=

𝑘1

𝑘2
(

𝛾1̇

𝛾2̇
)

𝑛−1

,                                                               (8) 

for 
 𝜇1

𝜇2
= 𝜇,  

𝑘1

𝑘2
= 𝑘 and 

𝛾1̇

𝛾2̇
= �̇� then the final non-

dimentional form of power low model is 

𝜇 = 𝑘(�̇�)𝑛−1.                                                               (9) 

 In the first part of this work, we established definitive 

values for all of the model's parameters (Introduction). 

4. NUMERICAL METHOD 

 Utilizing a fractional step methodology, three steps 

make up (T-G/P-C) finite element method (D.M. Hawken 

et al., 1990). Starting with the initial velocity and pressure 

fields as inputs, we employ a two-step predictor-corrector 

approach to determine the 𝑢∗ ingredients. The Choleski 

technique is used to calculate the pressure differences 

(𝑝𝑛+1 − 𝑝𝑛) in the second stage, with 𝑢∗ acting as the 

governing variable. The third stage involves making an 

estimation for the velocity field 𝑢𝑛+1 using the mid-

velocity 𝑢∗ and pressure differences (𝑝𝑛+1 − 𝑝𝑛). The 

weak formulation was used as a starting point for the 

application of the finite element approach, which finally 

resulted in the derivation of algebraic equations 

represented by matrices. Where it has been abbreviated by 

equations from (10) to (13). 

 Then this leads directly to the fractional step being 

written as follows: 

Stage1a:
2𝑅𝑒

Δ𝑡
[𝑢𝑛+

1

2 − 𝑢𝑛] = 𝐿(𝑢𝑛, 𝑑𝑛) − ∇𝑝𝑛,             (10) 

Stage1b:
𝑅𝑒

Δ𝑡
[𝑢∗ − 𝑢𝑛] = 𝐿 (𝑢𝑛+

1

2, 𝑑𝑛+
1

2) − ∇𝑝𝑛,          (11) 

Stage2:∇2(𝑝𝑛+1 − 𝑝𝑛) =
𝑅𝑒

𝜃Δ𝑡
∇ ⋅ 𝑢∗,                                    (12) 

Stage3: 𝑢𝑛+1 = 𝑢∗ −
𝜃Δ𝑡

𝑅𝑒
[∇(𝑝𝑛+1 − 𝑝𝑛)].                       (13) 

Where, 

𝐿(𝑢, 𝑑) = [∇ ⋅ (2𝜇(�̇�, 𝜀)𝑑) − 𝑅𝑒 𝑢 ⋅ ∇𝑢].                    (14) 

The Crank-Nicolson approach, which has superior 

precision and stability over other methods and reduces 

time errors in the time-stepping scheme, is the 

methodology used in the solution for θ  = 1/2, (J. Crank & 

P. Nicolson 1996). Then, the matrix form of the 

corresponding (T-G/P-C) finite element method from 

Equations (8), (9), (10), and (11) may be expressed as: see 

(Hawken et al., 1990). 

Step1a:[
2𝑅𝑒

𝛥𝑡
𝑀 +

1

2
𝑆] (𝑈𝑛+

1

2 − 𝑈𝑛) = {−[𝑆 +

𝑅𝑒 𝑁(𝑈)]𝑈 + ℓ𝑇𝑃}𝑛,                                                     (15) 

Step 1b: [
𝑅𝑒

𝛥𝑡
𝑀 +

1

2
𝑆] (𝑈∗ − 𝑈𝑛) = {−𝑆𝑈 + ℓ𝑇𝑃}𝑛 −

𝑅𝑒 [𝑁(𝑈)𝑈]𝑛+
1

2,                                                             (16) 
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Step2: 𝐾(𝑃𝑛+1 − 𝑃𝑛) = −
𝑅𝑒

𝜃𝛥𝑡
ℓ𝑈∗,                                     (17) 

Step3:
𝑅𝑒

𝛥𝑡
𝑀(𝑈𝑛+1 − 𝑈∗) = 𝜃ℓ𝑇(𝑃𝑛+1 − 𝑃𝑛),                (18) 

where 𝑈∗ is the intermediate nodal velocity vector 

established in Step 1b, and the other four vectors 

𝑈𝑛,  𝑈𝑛+1  and 𝑃𝑛, 𝑃𝑛+1 reflect the velocities and 

pressures at the nodes at times 𝑡𝑛 and 𝑡𝑛+1, respectively. 

The matrices for mass, momentum diffusion, convection, 

divergence/pressure gradient, and pressure stiffness are 

denoted by the letters M, S, N, ℓ, and K, respectively 

(López-Aguilar et al., 2015).  According to the matrix 

notation 

  𝑀𝑖𝑗 = ∫ 𝜙𝑖𝜙𝑗𝑑Ω
Ω

,  𝐾𝑖𝑗 = ∫ ∇𝜓𝑖∇𝜓𝑗𝑑Ω
Ω

,  

  𝑁(𝑈)𝑖𝑗 = ∫ 𝜙𝑖(𝑈𝑛. ∇𝜙𝑗)𝑑Ω
Ω

 ,  (ℓ)𝑖𝑗 = ∫ 𝜓𝑖(∇. 𝜙𝑗)
Ω

𝑑Ω,                         

(𝑆)𝑖𝑗 = ∫ 𝜇(𝛾,̇  𝜖̇)[∇𝜙𝑖∇𝜙𝑗 + (∇𝜙𝑗)𝜏]
Ω

𝑑Ω 

5. Results 

The following results were obtained via programming 

the simulations code. Taylor Galerkin pressure correction 

finite element method is used in this study to address the 

problem of constrained inelastic fluid flow through the 4:1 

sharp contraction, 4:1rounded-corner contraction, 6:1 

sharp contraction, and 8:1sharp contraction. This research 

focuses on the convergence rate and the behavior of the 

solution components. In addition, the implications of 

altering the geometric form of the flow channel on the 

aforementioned research has been discussed. Also this 

study reached the vortex length in 4:1 contraction flow.  

Where the research was make up to a comparison of two 

sections. The first consisted of a 4:1 rounded-corner 

contraction and a 4:1 sharp contraction, while the second 

consisted of a 4:1 sharp contraction, a 6:1 sharp 

contraction, and an 8:1 sharp contraction. 

Figures 3 and 4 show, respectively, the velocity and 

pressure fields of an inelastic fluid flow axisymmetric 4:1 

rounded-corner and sharp contraction geometries. Both of 

these contractions have a ratio of 4:1. With the parameters 

{Re = 1, k= 1, and n = 0.8}, it is possible to see a pressure 

difference and a small difference in velocity. It is observed 

that in the case of a rounded-corner contraction, the 

maximum velocity is lower than in the case of a sharp 

contraction. It is common knowledge that 𝐴1 𝑢1 = 𝐴2 𝑢2, 

which may be expressed mathematically as the continuity 

equation (Şahin et al., 1995). In this equation, 𝐴1 and 𝑢1 

stand for the area and velocity in the broad part of the flow 

channel, while 𝐴2 and 𝑢2 stand for the area and velocity 

in the narrow part of the flow channel. This indicates that 

there will be a reduction in velocity if the area in the 

narrow portion of the channel is increasing. Since the 

diameters of the two channels are the same but the angle 

of contraction differs, curving the angle of contraction 

necessitates a bigger area for the narrow section of the 

channel than if the angle of contraction is sharp, which 

results in a reduction in velocity. As a result, we see that 

the velocity in the flow channel with a rounded-corner 

contraction is smaller than the velocity in the flow channel 

with a sharp contraction. 

 
(a) 

 
(b) 

Fig. 3 Velocity field with {Re = 1, k= 1, and n = 0.8} 

(a) 4:1 rounded-corner contraction (b) 4:1 sharp 

contraction 

 

 
(a) 

 
(b) 

Fig. 4 Pressure field with {Re = 1, k= 1, and n = 0.8}, 

(a) 4:1 rounded-corner contraction (b) 4:1 sharp 

contraction 

 

The rate of convergence of axial velocity and pressure 

are depicted in Fig. 5 and Fig. 6, respectively for both 

flows 4:1 rounded-corner contraction and 4:1 sharp 

contraction in the case of (a) shear thinning with n = 0.8 

and (b) shear thickening with n = 1.6 at fixed {Re = 8 and 

k =1}. The findings indicate that the convergence rate of 

velocity and pressure for both shear thinning and shear 

thickening in the sharp contraction is less than that for the 

rounded contraction. 

For||𝐸(𝑢𝑧)|| =||𝑢𝑛+1 − 𝑢𝑛||𝑝and ||𝐸(𝑝)|| = ||𝑝𝑛+1 −

𝑝𝑛||𝑝 must both be ≤ 𝑇𝑂𝐿, where (TOL=10−6), denoted 

the tolerance value of error. Also Δ𝑡 = 10−3 

Using the fixed parameters {Re = 1, k = 1}, Fig. 7 

depicts the relationship between the power-law index (n) 

and maximum level of velocity along the axis of 

symmetry. According to the findings, increasing the 

values of n leads to a discernible rise in the maximum 

velocity of the fluid flow in both flows sharp and rounded 

contraction for the level of n from 0.2 to 3, which 

reflects a direct correlation between the value of n and  
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(a) (b) 

Fig. 5 Convergence of velocity; Re=8, k=1 (a) shear thinning, (b) shear thickening 

 

  
(a) (b) 

Fig. 6 Convergence of pressure; Re=8, k=1 (a) shear thinning, (b) shear thickening 

 

 
Fig. 7 Maximum velocity along centreline; n-

variation, Re =1, k =1 

 
the maximum velocity. Due to the effect of pressure 

increasing on the fluid and rise in viscosity, particularly 

towards the inner walls of the channel, then the velocity 

falls near the walls and increases along the centerline to 

alleviate the increased pressure.  This is supported by the 

evidence presented in (Mahmood et al., 2022). Since the 

two Figs are subject to the same criteria in the flow that 

occurs between them, there is very small a discernible 

difference in the curves that represent the relationship 

between n and the maximum velocity and Fig. 3 reinforces 

that finding.  

Figure 8 depicts the relationship that exists between 

the parameter n and the time step, under {Re = 1 and k = 

1}. The findings demonstrated that the time step is as little 

as feasible when n approaches to 1 from the right or left. 

Here, insignificant difference is observed between. This 

indicate that the rate of convergence in Newtonian fluid is 

less than of convergence rate of non-Newtonian fluid. 

 

  
Fig. 8 Power law index (n) vs. time step, Re=1, k=1 



A. Sharhan and A. Al-Muslimawi / JAFM, Vol. 16, No. 12, pp. 2411-2423, 2023.  

 

2417 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Velocity on the symmetrical axis; Re=1 , k=1, 

(a) Shear thinning, (b) shear thickening, (c) 

contraction section =20 

 

Both flows rounded and sharp due to the closeness of 

their real size and their subjection to the same flow 

conditions. The profiles depict the relationship between n 

and the time step for both flows can be seen to vary 

somewhat in the case of shear thinning. In contrast, for the 

shear thickening there is hardly any discernible difference 

in both cases. 

 Figures 9 and 10 show the behavior, of axial velocity 

and pressure along the symmetry axis with the fixed 

parameters {Re = 10 and k = 1}.  Here, the profiles are 

plotted for both fluids shear thinning with n=0.8 and shear 

thickening with n=1.6. The results reveal that, the  

 
(a) 

 
(b) 

Fig. 10 Pressure on the symmetrical axis; Re =1 , k=1, 

(a) Shear thinning, (b) shear thickening 
 

maximum level of velocity is occurred near of the 

contraction region, due to the channel's extreme 

narrowness, which is consistent with the physical facts and 

the results of others (Walker et al., 2011). In addition, from 

the comparison between sharp and rounded cases one 

cannot see any significant change in the level of velocity 

along the channel. Also one can observe that in the case of 

shear thinning the flow through rounded-corner 

contraction is more stable than that with sharp-corner 

contraction. In fact, the sudden sharp contraction of the 

flow channel causes a disturbance in the fluid flow, 

making its velocity fluctuate up and down. Also, the large 

difference in velocity before and after the fluid enters the 

narrow part of the flow channel has a significant impact 

on the fluctuation of the velocity level within the narrow 

part of the channel. Therefore, we notice that the velocity 

level in the narrow part of the channel is instable in the 

case of shear thinning compared to shear thickening case.  

In contrast, we see an opposite feature in the case of 

pressure drop, where the profiles in Fig. 10 provide that 

the maximum level of pressure in both channels at the inlet 

(Schäfle & Kautz, 2019). For inlet flow we applied the  

Poiseuille flow with max-velocity is 2, see (Fadhel & Al-

Muslimawi, 2020). 

 The fluctuation in the rate of velocity on the axis of 

symmetry in Fig. 9 (a) becomes stable as the length of the 

contraction section increases in the channel. This can be 

clearly seen in Fig. 9 (c), where stability appears in the rate  
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Fig. 11  Scheme of streamline for 4:1  rounded-corner 

and sharp contraction with {Re=1, k=2} n variation, 

(a) n=0.2, (b) n=1.8 

 

 
Fig. 12 Vortex length vs function of n; Re=1, k=2 

 

of velocity as we move away from the first point of 

contraction. 

 In the field of fluid dynamics, a vortex is an area in a 

fluid in which the flow spins around an axis of rotation, 

that can be either straight or curved. Vortex length (𝑑𝑧) is 

an expression that refers to the distance between the 

separation point in this region and the contraction plane 

indicated in Fig. 11, (Sousa et al., 2011). The length of a 

vortex (𝑑𝑧) is affected by different of factors, including 

pressure, velocity, the type of flow, laminar or turbulent, 

Reynolds number (Re), viscosity, and geometric cross-

sectional area of the flow channel (Alves et al., 2005) and 

(Thorne & Blandford, 2017). Thus, we have been keen to 

study the effect of some factors on the Vortex length (𝑑𝑧). 

. n-variation: The impact of varying the value of 

power-law index n on the vortex length for {Re =1, k = 2} 

is shown in Fig. 11 for a variety of contraction geometries 

of streamline (4:1 sharp contraction and rounded 

contraction). Substantial vortex enhancement is observed 

through upstream vortex intensity and cell-size increase as 

n increases. 

 Figure 12 shows that the vortex length is a function of 

n corresponding to both flows sharp-corner and rounded-

corner at {Re=1, k=2}. Results on vortex length reveal, as  

 
Fig. 13 Scheme of streamline for 4:1 rounded-corner 

and sharp  contraction with {n=0.8, Re=1} and k 

variation, (a) k=1, (b) k=7 

 

 
Fig. 14.Vortex length vs  faunction; of k; Re =1, n 

=0.8 
 

reported by others (Ameur, 2018), that in both geometries 

vortex length is rised as the values of n increases. In this 

context, one can see that the vortex  length in the case of 

sharp-corner contraction is longer than that in the case of 

rounded-corner contraction 

k-variation: The results of the vortex length with the 

variation in k values for various geometries and the value 

of the constant parameter {Re = 1, n=0.8} are represented 

in the Fig. 13. The streamline for the flow via the 4:1 

contraction channels is shown geometrically in Fig 13, 

whether it is rounded-corner or sharp. Where the vortex's 

overall behavior corresponds to the vortex's behavior in 

Fig. 11. 

As can be seen in Fig. 14, there is a positive 

relationship between k and the vortex length: as the length 

of the vortex increases, so does the value of k. It's also 

worth noting that the geometry's surface area has an 

impact; doing so while keeping the same outlet results in 

a longer vortex. For a rounded-corner contraction, the 

vortex length is less than that for a sharp contraction.  

Re-variation: Fig. 15 that follow demonstrate the 

impact of varying the values of Re on the length of the  

(a) 

(b) 

(a) 

(b) 
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Fig. 15 Scheme of streamline for 4:1 rounded-corner 

and sharp contraction with {n=0.8, k =2} and Re 

variation, (a) Re =5, (b) Re =20 

 

 
Fig. 16 Vortex length vs function of Re; n=0.8, k =2 

 

vortex with fixed parameters {n=0.8, k=2}. Figure 16 

illustrates an inverse relationship between Re and vortex 

length, where the vortex length (𝑑𝑧) decreases as Re rises. 

Furthermore, the results showed that the vortex length is 

significantly and clearly influenced by the geometry 

difference. Greater values for the length of vortices are 

produced by the sharp-corner contraction geometry 

compared to rounded-corner geometry. 

Again, the vortex length is presented as a function of 

Re under same setting of parameters in Fig. 16. The 

profiles demonstrate that Re and vortex length have an 

inverse relationship, where vortex length decreases as Re 

increases and that is consistent with the findings obtained 

by the researchers (Karlson et al., 2020). According, the 

vortex is longer in the case of sharp contraction than a 

rounded contraction. 

For R is denoted the inlet diameter of channel we take 

the normalized of vortex length (𝑑𝑧/𝑅) vs functions of n, 

k and Re are considerd inf Figs 12, 14 and 16.The 

velocities and pressures are significantly impacted by 

variations in the size of the flow channels, which have the 

same outlet. With increasing channel size comes a 

corresponding rise in the number of elements needed to  

 

Fig. 17 Velocity field with {Re = 1, k= 1, and n = 0.8}; 

(a) 6:1 sharp contraction; (b) 8:1 sharp contraction 

 

represent the mesh of the channel geometry, where table 1 

provides statistical information on these values. The 

velocity and pressure fields for the 6:1 and 8:1 abrupt 

contraction flow channels are shown in Figs 17 and 18, 

respectively, where (a) stands for 6:1 and (b) stands for 8:1 

with fixed parameters {Re = 1, k = 1, n = 0.8}. It was 

previously covered how the 4:1 channel's velocity and 

pressure fields are described. It seems from these Figs, 

which depict the pressure and velocity fields, that the 

quantity of flow velocity at the outflow is vastly different 

under the impact of the change ratio of area with same 

diameter of channel outlet. The fluid's velocity at the 

outlet increases as the inlet part expands.  

 

 
Fig. 18 Pressure field with {Re = 1, k = 1, and n = 

0.8}; (a) 6:1 sharp contraction; (b) 8:1 sharp 

contraction 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 
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Fig. 19 Convergence of velocity; Re=1, k=1 ;(a) shear 

thinning, (b) shear thickening 

 

The general formula for the continuity equation (Şahin 

et al., 1995) is (𝐴1𝑢1 = 𝐴2 𝑢2), which provides an 

explanation for this increase. where 𝐴1𝑢1 represents the 

large area of the channel with velocity in it and 𝐴2 𝑢2 

represents the narrow area of the channel with velocity in 

it (the systolic section). While the second section's areas 

are equal for all channel, the first section's areas of the 

channels are different. In order to satisfy the continuity 

equation, the velocity at the exit, denoted by  𝑢2, must 

dramatically rise as the area of the first section increases.   

Convergence of axial velocities and pressures are 

shown in Figs 19 and 20, with (a) representing shear 

thinning and (b) representing shear thickening with 

constant parameters {Re = 1, k = 1}, respectively with (n 

= 0.8) in shear thinning and (n = 1.8), in shear thickening. 

In both the shear-thinning and shear-thickening scenarios, 

we find that the convergence rate increases as the mesh 

area becomes bigger. This is easily seen when using a 

uniform element size across geometries types; when the 

geometry area (mesh) expands, more elements are 

required, therefore the solution time step increases 

accordingly (Patil & Jeyakarthikeyan, 2018). As a result, 

we can observe that the convergence rate for channel 8:1 

is higher than for channel 6:1, which is higher than for 

channel 4:1. 

 

 
(a) 

 
(b) 

Fig. 20 Convergence of pressure; Re=1, k=1 ;(a) shear 

thinning, (b) shear thickening 

 

Fixed parameters {Re = 0.1, k = 1} are used to illustrate 

the relationship between n and the maximum axial 

velocity in Fig .21. Where it was shown that as n values 

are increased, maximum velocity values are also increased 

(Sharhanl & Al-Muslimawi, 2021). Figure 17 provides a 

clear explanation for the observation that the maximum 

velocity values increased together with the size of the 

geometric Fige.  

 

 

Fig. 21 Maximum velocity along centerline; n-

variation, Re=0.01, k=1 

(a) 

(b

) 
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Fig. 22 Power law index (n) vs. time step, Re=1, k=1 

 

 Parameters {Re = 0.1, k = 1} are held fixed in Fig. 22 

to illustrate the relationship between n and time step. The 

findings demonstrated that time step rises as shear 

thickness or thinning increases, as can also be shown in 

(Sharhanl & Al-Muslimawi, 2021). Figure 22 also reveals 

that the time step rises in channel 8:1 more than in channel 

6:1, which is more than in channel 4:1. 

 

 

 
Fig. 23 Velocity through symmetry axis; Re=1, k=1, 

(a) Shear thinning, (b) shear thickening 

 
Fig. 24 Pressure through symmetry axis; Re=1, k=1, 

(a) Shear thinning, (b) shear thickening 

 

Figures 23 and 24 show the behavior of axial velocity 

and pressure, respectively, on the axis of symmetry for 

different geometries of 4:1, 6:1, and 8:1 sharp contraction, 

with the fixed parameters {Re = 1, k = 1} and n = 0.8 in 

the case of shear thinning in (a) and n = 1.8 in the case of 

shear thickness in (b). The three curves that depict the 

axial velocities on the symmetric lines of various 

geometers demonstrate that the velocities rise as the 

geometry area grows, as we previously discussed in Figs 

17 and 21. Figure 23 shows that when z approaches 10, the 

velocity rapidly rises for all three curves representing the 

three geometries due to the narrowing of the flow channel 

and the increase in velocity in the narrow channel. In the 

case of shear thinning, it seems that the velocity line 

representing the 8:1 geometry oscillates. This is due to the 

fact that the difference of velocity before and after narrow 

section of channel is very big. Accordingly, in shear 

thickening the line of velocity is stable because the 

difference of fluid velocity before and after narrow part of 

channel   less than in shear thinning. As for Fig. 24, which 

represents the behavior of pressure on the axis of 

symmetry, we notice the behavior of pressure is 

completely different and opposite to the behavior of 

velocity in terms of value and direction, and Bernoulli's 

principle explains this clearly. 

(a) 

(b) 

(a) 

(b) 
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6. CONCLUSION 

Starting with the Navier-Stokes equations, this study 

reviews the numerical analysis of the flow of an inelastic 

fluid via different contraction channels. We investigated 

the flow in axisymmetric 2D planar contraction channel 

under isothermal circumstances using a time-stepping 

Taylor Galerkin Pressure Correction (T-G/P-C) finite 

element method. According to the findings, sharp 

contractions had a greater   velocities in the 4:1 flow 

channel compared to rounded-corner contractions. While 

the rate of convergence of the velocity and pressure of the 

fluid flow through the rounded-corner contraction channel 

is greater than the rate of convergence of the velocity and 

pressure in the flow channel of the sharp contraction. The 

results also showed that the vortex length is directly 

related to the parameters of the power law model and has 

an inverse relationship to the Reynolds number.  This was 

a comparison of the 4:1 flow channels of sharp and 

rounded-corner contractions. The second part of the 

results was a comparison among the sharp flow channels 

only, which are 4:1, 6:1 and 8:1. The results showed that 

increasing the geometric area of the flow channel leads to 

an increase in the axial velocity in symmetry line and also 

increases the rate of convergence of velocity and pressure. 

The velocity and the rate of convergence of velocity and 

pressure in the 8:1 flow channel are greater than in the 6:1 

flow channel, which in turn is greater than in the 4:1 flow 

channel. 
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