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ABSTRACT 

Non-Newtonian fluid flow in pipe bends is inevitable in industrial applications. 

Previous researchers have extensively explored Newtonian flow through curved 

ducts. However, the non-Newtonian counterpart gets little attention. We study 

the turbulent flow of shear-dependent fluids obeying the Power-Law model in a 

pipe manifold containing an in-plane double bend. Ostwald–de Waele's power 

law is used to model the fluid's rheology. We utilize computational fluid 

dynamics (CFD) to solve Reynolds-averaged Navier–Stokes (RANS) equations 

with the k-𝜀 turbulence model. We validate our numerical results with previous 

experimental results. The in-plane double bend perturbs the flow in the pipe 

manifold to develop a Prandtl's secondary flow of the first kind. A fully 

developed flow at the bend upstream is disturbed due to the bend's curvature and 

regains its fully developed characteristics upon a certain downstream length after 

the exit of the bend. We study the rheological characteristics of the secondary 

flow within the bend and the evolution of fluid flow at the bend downstream. 

We demonstrate that the centrifugal force-dominated secondary flow increases 

with a decrease of the non-Newtonian power-law index. We capture the camel's-

back-shaped velocity profiles within the bend due to accelerating-decelerating 

flow. The study reveals that the average flow velocity increases along the bend 

with a corresponding pressure head loss. We quantify this velocity rise by a 

newly introduced non-dimensional number, viz. enhancement ratio. The double 

bend's enhancement ratio decreases with an increase in n. 
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1. INTRODUCTION 

Bent pipes are unavoidable in industries like gas and 

oil, food processing, paper manufacturing, and heat & 

energy sectors like nuclear power plants, solar thermal 

systems etc. The evolution of cross-stream flow inside a 

skewed pipe, i.e. Prandtl's secondary flow of the first kind, 

has been a matter of concern for years (Bradshaw et al., 

1987; Lai et al., 1991; Kalpakli et al., 2016). Additional 

losses are incurred in the pressure head due to the presence 

of bends in ducts (Ito 1960), which is a matter of concern 

for engineers to optimize energy consumption. This loss is 

due to the disturbances created by cross-stream flow, 

which is greatly affected by both the Reynolds number 

(Re) and curvature ratio (Berger et al., 1983; Ito 1987). 

The curvature ratio is a geometrical parameter, defined as 

the ratio of bend radius to the inner radius of the pipe, i.e. 

Rc/R. A non-dimensional number called Dean number 

(De) defined as, 𝐷𝑒 ≡ 𝑅𝑒√𝑅𝑐 𝑅⁄ ; is often used to 

characterize the effect of Re and (Rc/R) on flow inside 

curved pipes in a combined manner. On the contrary, 

analyzing the individual effect of Re and Rc/R is a good 

practice in many cases, such as turbulent flows (Cieślicki 

& Piechna, 2012; Canton et al., 2016). Prandtl's secondary 

flow of the first kind is always a centrifugal-force 

dominated flow, resulting in a local pressure gradient 

(Barua 1963) which causes the mid-plane fluid particles to 

move towards the outer core of the pipe along with the 

formation of a pair of counter-rotating Dean vortices 

(Dean, 1927).  

Effective space utilization is a matter of concern in 

industries, attracting engineers towards layout complexity 

while designing a system. To avoid long-distance straight 

pipes, often bends and bend-combinations are employed. 

Successive bends or bend combinations may be either in- 
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NOMENCLATURE 

CFD Computational Fluid Dynamics  n power law index 

D inner diameter of the pipe   Vi bulk velocity at inlet  

D rate of deformation tensor  Vp magnitude of primary velocity  

De Dean number  Vs magnitude of secondary velocity  

K consistency index   𝜀 
rate of dissipation of the turbulent kinetic  

energy 

k turbulent kinetic energy  𝜖 enhancement ratio  

Ls length of straight upstream section   φ non-dimensional pressure difference 

Lb length of bend section   μ viscosity  

Ld length of downstream section   μw viscosity at wall 

R inner Radius of the pipe   τ shear stress 

Rc radius of curvature of the pipe bend   �̇� rate of shear strain  

Re Reynolds number    

 
plane or out-of-plane types. These bends are the sources 

of additional turbulence distortions (Aichouni et al., 

2016). Very few studies are available on flow through 

different bend conditions, e.g. Fiedler 1997, Laribi et al. 

2010, 2013, Shwin et al. 2017, out of which most literature 

concentrated on out-of-plane bend combinations. 

Turbulent flow in out-of-plane double bend is a lucid area 

in Fluid dynamics. Fiedler 1997 theoretically explained 

the flow physics in an out-of-plane (90o) double bend. A 

detailed experimental study was performed by Xiong et al. 

2003. Straka et al. 2019 examined the effect of swirl in the 

out-of-plane (90o) double bend. We, however, focus on the 

local flow behaviors of an in-plane (90o) double bend. 

Dense power plant slurry, fruit juices, paper pulp, 

various materials in the pharmaceutical industry, 

wastewater, and crude oil are some popular non-

Newtonian fluids in engineering applications. With the 

increasing usage of non-Newtonian fluids, it has been an 

obvious requirement to study the flow behaviors of these 

fluids through bends in order to operate their flows most 

economically. Several studies to investigate bend losses 

for non-Newtonian fluids have been made. Polizelli et al. 

(2003) focused on friction losses in valves and fittings for 

these fluids. Bíbok et al. (2020) studied pressure drops and 

flow patterns of two real power law fluids passing through 

a 90o elbow, both experimentally and numerically. 

Although previous studies on non-Newtonian fluid flow in 

bend are not extensive, several attempts have been made 

to understand the flow behaviors for different 

applications, such as dense slurry mixtures (Csizmadia, 

2016; Singh et al., 2019), power plant slurries (Csizmadia 

& Hős, 2013), liquid food products (Cabral et al., 2011) 

and liquid eggs (Yigit et al., 2016). Some other works may 

also be mentioned exploring various flow features of 

power-law fluids in a stationary duct (Lambride et al., 

2023) and adjacent to rotating ducts (Khali et al., 2017, 

2022, Khali & Nebbali, 2023). Non-Newtonian power-law 

behaviors of nano-fluids are also seeking the interests of 

recent researchers [Esfe & Rostamian, (2017), Ellahi et al. 

(2019), Dey & Mahanta (2022)]. It is well known that for 

all incompressible Newtonian fluids, shear stress (𝝉) is 

proportional to the rate of deformation tensor (𝑫), 

 𝝉 = 𝜇𝑫                                                                             (1) 

where, 𝑫 = (
𝝏𝒖𝒋

𝝏𝒖𝒊
+

𝝏𝒖𝒊

𝝏𝒖𝒋
)                                               (2) 

The viscosity, 𝜇 is independent of 𝑫 for Newtonian 

fluids. However, for non-Newtonian fluids, it is a function 

of the rate of shear strain, �̇� related to 𝑫 as follows: 

�̇� =  √
𝟏

𝟐
 𝑫:𝑫                                                               (3) 

where, 𝑫:𝑫 represents Frobenius product of 𝑫. 

After carefully reviewing prior literature, the authors 

found that studies of turbulent flow through in-plane 

90°double bends could be more extensive. Such studies 

with non-Newtonian fluids are never reported heretofore. 

Our study utilizes the power-law model for the rheological 

characterization of viscoplastic non-Newtonian fluids. 

Viscoplastic fluids are materials which behave like a rigid 

body and undergo modest deformation as long as the 

exerted shear stress does not exceed a yield stress limit; 

beyond the threshold, they behave like a viscous fluid 

(Mitsoulis 2007). A few examples of viscoplastic fluids 

are as follows: drilling muds, crude oils extracted in 

petroleum industries, fruit juices, egg yolk, and starch 

from the food industry, sewage slurry, toothpaste, paints, 

dairy products and many more. A well-known model for 

characterizing viscoplastic fluids' behavior is the 

Herschel-Bulkley model (Mendes & Dutra, 2004), which 

is written as: 

{
𝜏 = 𝜏0 + 𝐾�̇�𝑛, 𝑤ℎ𝑒𝑛, 𝜏 > 𝜏0     

𝑒𝑙𝑠𝑒, �̇�  = 0                                    
                                  (4) 

where, 𝜏 is the shear stress, 𝐾 is the consistency index, 𝜏0 

is the yield stress, and 𝑛 is the flow behavior index. This 

equation would reduce to Ostwald–De Waele power law 

model (Shapovalov 2017) if 𝜏0 is considered to be zero.  

𝜏 = 𝐾�̇�𝑛                                                                                (5) 

Fluids obeying this particular model are known as 

power-law fluids. Power law fluids, which are mainly 

classified into shear-thinning (power law index, 𝑛 < 1) 

and shear-thickening (𝑛 > 1), are generally considered 

within a range of 𝑛 from 0.6 to 1.8 (Yigit et al., 2016). 

Corn starch and water mixes, silly putty, and sand in water 

are some examples of shear-thickening fluids, on the other 

hand, ketchup, paint, glue, and blood exhibit shear-

thinning behavior. Unlike the power-law model, the 

tangent hyperbolic fluid model (Chu et al., 2023) is often 

used to characterize polymeric shear-thinning fluids. The 
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Casson model (Li et al., 2023a) is attributed to shear-

thinning fluids having finite yield stress. The Carreau 

model (Li et al., 2023b) is used for fluids which exhibit 

shear-thinning behavior at a low shear rate and shear-

thickening behavior at a higher shear rate. 

It is challenging to come up with a unique definition 

of the Reynolds number, which may appropriately 

characterize a non-Newtonian fluid flow. The present 

authors find many definitions of the Reynolds number in 

the existing literature utilized by previous researchers. 

Typically, Reynolds numbers for non-Newtonian fluids 

are expressed as a function of apparent kinematic 

viscosity, resulting in a modification of its classic 

definition. A few available definitions of such modified 

Reynolds numbers are given below. 

The definition proposed by Collins and Schowalter 

(1963): 

𝑅𝑒𝐶𝑆 = 
𝜌𝑉𝑖

2−𝑛𝐷𝑛

𝐾
                                                              (6) 

The definition proposed by Metzner and Reed (1955): 

𝑅𝑒𝑀𝑅 = 
𝜌𝑉𝑖

2−𝑛𝐷𝑛

𝐾
8(

𝑛

6𝑛 + 2
)
𝑛

                                     (7) 

The definition proposed by Marn and Ternik (2003):  

𝑅𝑒𝑀𝑇 = 
𝜌𝑉𝑖𝐷

𝐴(8𝑉𝑖/𝐷) + 𝐵
                                                  (8) 

The definition proposed by Poole and Ridley (2007): 

𝑅𝑒𝑊𝑎𝑙𝑙 = 
𝜌𝑉𝑖

2−𝑛𝐷𝑛

𝐾
(

𝑛

2 + 6𝑛
)
𝑛−1

                               (9) 

The definition proposed by Rudman et al. (2004): 

𝑅𝑒𝑊𝑎𝑙𝑙 = 
𝜌𝑉𝑖𝐷

𝜇𝑤
; 𝜇𝑤 = 𝐾1/𝑛 𝜏𝑤

(𝜏𝑤−𝜏𝑦)1/𝑛                        (10) 

For quantifying the Reynolds number in the 

subsequent analysis, we adopt the definition proposed by 

Metzner and Reed (1955), Eq. (7), which is switched to 

the classic expression of the Reynolds number only in the 

limit of n = 1. Note that the consistency index K can be 

interpreted as the dynamic viscosity only for n = 1. For 

any n other than 1, K does not have the dimension of 

dynamic viscosity. In this connection, we introduce a new 

parameter 𝑅𝑒𝑁, identical to the classic Reynolds number 

at n=1. The definition of 𝑅𝑒𝑁 is as follows: 

𝑅𝑒𝑁 = 
𝜌𝑉𝑖𝐷

𝐾
                                                                    (11) 

where 𝑉𝑖 is the area-averaged normal velocity at the inlet 

plane. We perform CFD simulations for incompressible 

fluid flow for a fixed geometry and mass inflow rate. 

Hence, 𝑉𝑖 is constant (5 m/s) in all simulations. Moreover, 

𝑅𝑒𝑁 does not vary since the consistency index (𝐾) is 

independent of 𝑛 and fixed to a particular value (0.001) in 

our simulations. The rationale behind this approach is to 

reveal the distinct role of 𝑛 in the overall flow morphology 

while preserving the major dimensional input parameters. 

Thus, for a fixed 𝑅𝑒𝑁, which is generally a dimensional 

parameter, we generate the solution dataset for various 

combinations of 𝑅𝑒𝑀𝑅 and n. For a particular n, the  

 
Fig. 1 𝑹𝒆𝑴𝑹 versus 𝒏 for a fixed  𝑹𝒆𝑵[Results 

presented in § 3 correspond to a fixed 𝑹𝒆𝑵 (𝟒 × 𝟏𝟎𝟓), 

while n is varied from 0.6 to 1.4.] 

 

corresponding value of 𝑅𝑒𝑀𝑅 can be predicted from the 

graph shown in Fig. 1. 

The other way of performing the comparative study is 

to fix 𝑅𝑒𝑀𝑅  for all 𝑛 , adjusting the value of 𝑉𝑖  with a 

change in 𝑛 . This approach gives rise to a negligible 

variation of friction factor with a change in 𝑛 . Since 

geometry is fixed for all simulations, the non-dimensional 

pressure difference (between the inlet and outlet of the 

pipe manifold) would remain insensitive with a change in 

𝑛 . Thus, it would be challenging to quantify the non-

dimensional velocity and pressure changes along the bend 

with a change in 𝑛, adopting this approach. We follow the 

first approach for practical interest. 

In the subsequent sections, we predict the non-

Newtonian flow features within the bend and at far 

downstream by computational fluid dynamic (CFD) 

simulations. We focus only on the turbulent flow regime 

due to its versatile application. The bend’s pressure losses 

and secondary flow characteristics of power-law fluids are 

examined in contrast with Newtonian fluids. 

2. NUMERICAL MODELLING 

2.1 Computational Domain 

When a symmetrical velocity profile approaches a 

bend, it becomes asymmetric owing to secondary flow. 

This asymmetry manifests itself not only in terms of the 

stream-wise velocity profile but also in the formation of 

two uneven counter-rotating vortices (Fiedler 1997). 

Consequently, flow through a curved duct cannot be 

examined in an axisymmetric 2-dimensional flow domain. 

We consider a circular duct with an in-plane double bend 

(Fig. 1). The diameter (D) of the duct is 0.08 m, and the 

bend’s curvature ratio �̅�𝑐 (≡Rc/R) is 9. Inlet and outlet 

planes are perpendicular to the Y-axis. 

The direction of gravity is assumed along the negative 

Z-axis. Figure 2 shows two straight segments upstream 

and downstream of the bend. The upstream length (Ls) is 

5D. The downstream length (Ld) is adjusted to realize a 

fully developed velocity profile before the outlet plane. A 

fully developed turbulent velocity profile is also assumed 

at the inlet. 
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Fig. 2 Representation of the computational grid of the 

pipe manifold: (a) the full double-bend; (b) the inlet 

section; (c) the first bend’s isometric view; (d) the full 

pipe manifold 

 

2.2 Governing Equations  

The steady-state Reynolds-averaged Navier–Stokes 

equations for incompressible flow are as follows: 

     𝜌�⃗� . ∇�⃗� + ∇𝑝 − 𝜇. ∇�⃗� − 𝜌∇. 𝑹 = 𝑓                           (12) 

     ∇. �⃗� = 0                                                                           (13) 

where, �⃗�  is the velocity vector and  𝑹  is the Reynolds 

Stress Tensor. According to the 𝑘 − 𝜀  turbulent model 

(Biswas & Eswaran, 2002),  

𝑹 = −
2

3
𝑘𝑰 + 𝜐𝑇(∇�⃗� + ∇�⃗� 𝑇).                                         (14)   

𝜐𝑇 (≡ 𝐶𝜇
𝑘2

𝜀
) designates kinematic eddy viscosity.𝑘 is the 

turbulent kinetic energy and 𝜀 is the dissipation of 𝑘. The 

equations for 𝑘 and 𝜀 are as follows: 

�⃗� . ∇𝑘 − ∇. (𝐷𝑘∇𝑘) + 𝛾𝑘𝑘 = 𝐹𝑘                                    (15) 

�⃗� . ∇𝜀 − ∇. (𝐷𝜀∇𝜀) + 𝛾𝜖𝜀 = 𝐹𝜖                                        (16) 

Here, 𝐷𝑘(≡ 𝜐𝑇/𝜎𝑘 + 𝜈)  and 𝐷𝜖(≡ 𝜐𝑇/𝜎𝜀 + 𝜈)  are 

the diffusion coefficients; 𝛾𝑘(≡ 𝜀/𝑘)  and 𝛾∈(≡ 𝑐2𝜀/𝑘) 

are the reaction coefficients; the source terms are 𝐹𝑘 (≡

𝜐𝑇

2
|∇�⃗� + ∇�⃗� 𝑇|

2
)  and 𝐹𝜖(≡

𝑐1𝑘

2
|∇�⃗� + ∇�⃗� 𝑇|

2
) .  𝐶µ ,  𝜎𝑘 , 

𝜎𝜀 , 𝑐1 and 𝑐2 are model constants (Launder & Spalding, 

1974). 

The working fluid is modelled by Ostwald-de Waele 

power-law relation, widely accepted for its simplicity and 

versatility. The constitutive relation for power-law fluids 

is already provided in Eq. (5). The apparent viscosity of 

non-Newtonian fluids is approximated by 𝜇𝑎𝑝𝑝  as 

follows: 

𝜇𝑎𝑝𝑝 = 𝐾(�̇�𝑛−1)                                                                 (17)  

Other than consistency index and power law index, 

we also impose the maximum and minimum viscosity 

limits in our simulations. We set the maximum and 

minimum limits as  104 ×  𝜇𝑛=1  and 10−4  × 𝜇𝑛=1 , 

respectively (Yigit et al., 2016).  𝜇𝑛=1 designates the 

Newtonian base viscosity. 

2.3 CFD Procedure 

A fully structured three-dimensional hexahedron 

mesh (Fig. 2) has been used, composed of two regions, viz. 

core region (2-D mesh is square-shaped) and the region 

away from the core (2-D mesh constructed by radial and 

tangential grid lines). The boundary conditions used for 

the present simulations are as follows. At the inlet, 𝑉𝑥 =
𝑉𝑧 = 0  and �̅�𝑦 = 𝑉𝑖, where the over-bar designates area-

averaged quantities. 𝑉𝑖 is used as the characteristic 

velocity scale for normalization. Fully-developed 

turbulent-flow velocity profiles for Newtonian and power-

law fluids are generated in straight pipes and used as input 

velocity profiles in the inlet of the present computational 

domain. The value of turbulent intensity 𝐼 specified at the 

inlet is according to the well-known experimental 

correlation, 𝐼 = 0.16 × 𝑅𝑒−0.125 (ANSYS, 2022). 

At the outlet, a zero-gauge pressure is set. The pipe 

wall is assumed to be smooth and modelled by no slip and 

no penetration conditions. Simulations were performed by 

commercially available CFD software ANSYS FLUENT 

(ANSYS, 2022). Figure 2 displays a representative mesh 

used in the simulations. Here, we have used an optimum 

number of cells (9987500 cells) calibrated by a grid-

independence test. 

The CFD results for Newtonian fluids are validated with 

the experimental results of Laribi et al. 2003. A fully 

developed non-dimensional velocity profile at 91D 

downstream length at 𝑅𝑒 = 1.9 × 105 is constructed from 

the experimental data of Laribi et al. 2003 and compared 

with present CFD results. The simulated result is also 

validated with the empirical 
1

 7𝑡ℎ power-law profile, often 

used to capture turbulent mean flow behavior (Chant 

2005). Our CFD results are in good agreement with both 

the experimental and empirical equations. The comparison 

is displayed in Table 1. 

 

 

 

 

 

𝐴𝐴’ – Entry of 1st bend 

𝐵𝐵’ – Mid-plane of 1st bend 

CC’ – Exit of 1st bend and entry of 2nd 

bend 

DD’ – Mid-plane of 2nd bend 

EE’ – Exit of 2nd bend 

Lu –    Upstream length  

Lb –    Length of bended portion 

Ld–    Downstream length 

(a) 

(b) 

(c) 

(d) 

 

 

(a) 

 

 

(b) 

(c) 
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Table 1 Comparison of the numerical results with 

experimental results of Laribi et al. (2003) and 1/7th 

power law turbulent velocity profile [𝒏 = 𝟏,𝑹𝒄 =

𝟐,
𝒙

𝑫
= 𝟗𝟏] 

x/D 

V/Vmax 
Error 

(%) 1/7th 

Law 
Experiment Simulation 

0.05 0.76 0.72 0.752 4.444 

0.1 0.81 0.79 0.86 8.861 

0.15 0.86 0.83 0.923 9.880 

0.2 0.89 0.87 0.941 8.161 

0.25 0.93 0.9 0.972 8.000 

0.3 0.95 0.92 0.99 7.609 

0.35 0.97 0.94 0.995 5.851 

0.4 0.99 0.97 0.996 2.680 

0.45 0.99 0.98 0.997 1.735 

0.5 1 1 1 0.000 

0.55 0.99 0.98 0.99 1.020 

0.6 0.98 0.97 0.98 1.031 

0.65 0.96 0.95 0.974 2.526 

0.7 0.94 0.93 0.955 2.688 

0.75 0.91 0.9 0.938 4.222 

0.8 0.88 0.87 0.914 5.057 

0.85 0.84 0.83 0.885 6.627 

0.9 0.78 0.79 0.834 5.570 

0.96 0.72 0.72 0.728 1.111 

 

 
Fig. 3 Validating the friction factor of non-Newtonian 

fluid flow: present computation versus the 

experimental correlation given in Metzner and Reed 

1955 
 
To validate the results for power law fluids, the 

benchmark correlation proposed by Metzner and Reed. 

(1955) is used here. Figure 3 shows that the results 

obtained in the CFD simulations are in good agreement 

with the experimental correlation. 

3.    RESULTS & DISCUSSION 

A bend in a duct affects the primary or stream-wise 

flow through the duct, giving rise to a cross-stream 

secondary flow perpendicular to the primary flow. Fluid 

flow at the inner radius of the bend is subtly different from 

its outer radius. The flow inside the double-bend geometry 

also evolves spatially. We analyze the flow characteristics 

at various locations within the double-bend. For this 

purpose, we have selected five representative sections: 

entry of the first bend (𝐴𝐴′), mid-plane of the first bend 

(𝐵𝐵′), junction of two bends (𝐶𝐶′), mid-plane of the 

second bend (𝐷𝐷′) and exit of the second bend ( 𝐸𝐸′). A 

study capturing the evolution of secondary flow 

downstream of the second bend is also fascinating. We 

discuss the pertinent details obtained from our CFD 

simulations. 

3.1 Transition of Velocity Profiles inside Bend 

We study the effect of bend geometry on the 

velocity magnitude normalizing it by Vi. The radial 

variation of the normalized velocity magnitude is 

determined at different sections within the bend, which 

is shown in Fig. 4. Radial velocity distributions are 

captured at three different n viz. 0.6, 1 and 1.4 for 

comparison. A similar spatial evolution is observed for 

all values of n. It has been clearly observed that at the 

entrance of the first bend, the velocity profile is 

symmetrical, and the maximum velocity is found at the 

mid-portion (r/D=0, where r is defined as the local 

radius such that r/D is varied from -0.5 to 0.5 at two 

extreme ends). However, when the flow enters the bend 

the maximum velocity region moves towards the outer 

core of the bend. For the first bend, the outer core lies 

from r/D=0 to r/D=0.5. Thus, a gradual shifting of the 

peak velocity towards r/D=0.5 is observed up to the exit 

of the first bend. For the second bend, the bend 

curvature's direction is reversed; and, the outer core lies 

from r/D=0 to r/D=-0.5. Hence, the maxima shift 

towards r/D=-0.5. Previous researchers (Rohrig et al., 

2015; Dutta et al., 2016) have already reported the radial 

shifting for Newtonian fluid flow within a single bend. 

We illustrate the radial shifting in double-bend 

geometry, extending the study to a non-Newtonian flow 

regime. 

A non-uniform distribution of momentum influenced by 

the centrifugal force causes such a shift of maxima. The 

faster-moving fluid particles are pushed towards the outer 

core. With a spatial change in the bend-wall’s direction-

normal, the outer core also changes its position. 

Accordingly, the maxima appear in various locations. 

Thus, the bend in the duct geometry attributes to a 

redistribution of momentum within the duct in a passive 

mean. As a result, the duct flow exhibits an accelerating- 

decelerating feature, for which fluid particles accelerate 

along the outer wall and decelerate along the inner wall. A 

small value of �̅�𝑐 is more favorable for accelerating-

decelerating flow. The camel's-back-shaped velocity 

profiles shown in Fig. 4 near the junction of the two bends 

are attributed to this accelerating-decelerating flow (Dutta 

& Nandi, 2015). 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Normalized velocity Distribution within the 

double bend for (a) n=0.6, (b) n=1.0, (c) n=1.4. 

 

 

3.2 Reestablishment of Primary Velocity & Decay of 

Secondary Velocity After Bend  

The fluid particles boosted by the centrifugal force 

develop an in-plane velocity component inside the duct. 

While the primary velocity component (Vp) is due to the 

mainstream through-flow, the in-plane velocity 

component gives rise to a secondary flow perpendicular to 

the mainstream. We designate the secondary velocity 

component by Vs, defined as the magnitude of in-plane 

velocity components. This section examines the 

developments of Vp and Vs downstream of the bend. For 

illustrations, we normalize both components by the inlet 

velocity Vi. Figure 5 shows how the normalized secondary 

velocity (𝑉𝑠/𝑉𝑖) decays along the non-dimensional 

downstream length, 𝐿𝑑/𝐷. In the course of this study, it is 

found that a small inlet Reynolds number and a large 

curvature ratio values expedite the decay of secondary 

velocity. Further, the strength of secondary flow at the 

bend exit increases with decreasing n, as illustrated in Fig. 

5. However, it is surprising to note that the downstream 

length required to eliminate the secondary flow exhibits 

insensitivity with changes in n. Similar insensitivity was 

also observed in the case of laminar pipe flow of power-

law fluids; see Poole and Ridley (2007) for details. 

 

 
Fig. 5 Decay of Secondary velocity in the straight 

pipe downstream of the double bend 

 

When the flow exits the bend portion and enters the 

downstream straight pipe, the primary flow gradually re-

establishes its fully-developed state. The re-establishment 

of fully-developed primary velocity and decay of 

secondary velocity is not a separate phenomenon; instead, 

they occur simultaneously. It would be interesting to 

monitor the spatial evolution of the primary velocity on 

transverse cutting planes normal to the y-axis. For this 

purpose, we select two representative cutting planes at 

𝐿𝑑/𝐷=0 and 𝐿𝑑/𝐷=1, respectively. Figure 6 displays the 

contours of normalized primary velocity on these two 

cutting planes. It is observed that the non-axisymmetric 

distribution gets converted to a nearly axisymmetric 

distribution in the process of such spatial evolution. 

Further, the non-axisymmetric contours are observed far 

downstream in the near-wall region while entirely 

eliminated in the core region. The difference between the 

behavior of the core and near-wall regions is more 

prominent for non-Newtonian fluids rather than 

Newtonian fluids. The phenomenon is attributed to the 

near wall shear stress affecting the power-law viscosity, 

so the disturbance after the bend is carried forward far 

downstream. Figure 7 shows the secondary velocity 

contours just after the bend and at 𝐿𝑑/𝐷=1. The secondary 

motion is more pronounced for shear-thinning fluids than 

shear-thickening and Newtonian fluids. This observation 

corroborates the average trend of 𝑉𝑠 displayed previously 

in Fig. 5. The decay of secondary flow within a short 

downstream length is clearly reflected in the contour 

values for all representative cases. Figure 7 also shows that 

the magnitude of 𝑉𝑠 at the bend downstream attains a peak 

value near the top and bottom ends of the horizontal duct. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6 Contours of the normalized primary velocity in the straight pipe downstream of the double bend [for (a) 

Ld/D=0, n=0.6 (b) Ld/D=1, n=0.6 (c) Ld/D=0, n=1 (d)Ld/D=1, n=1 (e) Ld/D=0, n=1.4 (f) Ld/D=1, n=1.4] 
 

3.3 Velocity Enhancement and Pressure Drop 

Characteristics 

Fluid flow in the bend portion of a duct experiences a 

greater pressure loss than in the straight portion, which is 

valid for Newtonian and power-law fluids (Alexander 

1905; Ito, 1960; Żelasko & Niezgoda-Żelasko, 2010; 

Debnath et al., 2017). This additional pressure loss is 

associated with a corresponding increase in velocity. We 

invoke a new non-dimensional parameter, viz. 

enhancement ratio (𝜖), to quantify the velocity rise. The 

enhancement ratio is defined as follows: 

𝜖 = 
average velocity magnitude at the exit of bend

average velocity magnitude at the entry
                    (18) 

Since a double bend geometry is considered here, 𝜖 

can be determined separately for the first and second 

bends. Figure 2 shows that the first bend is extended from 

plane 𝐴𝐴′ to plane 𝐶𝐶′, and the second bend is  

extended from plane 𝐶𝐶′ to plane 𝐸𝐸′. Accordingly, the  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7 Contours of the normalized secondary velocity in the straight pipe downstream of the double bend [for (a) 

Ld/D=0, n=0.6 (b) Ld/D=1, n=0.6 (c) Ld/D=0, n=1 (d)Ld/D=1, n=1 (e) Ld/D=0, n=1.4 (f) Ld/D=1, n=1.4] 
 

enhancement ratio for the first and second bends are 

denoted by the symbols 𝜖𝐴𝐶  and 𝜖𝐶𝐸, respectively. The 

values of 𝜖𝐴𝐶 and 𝜖𝐶𝐸 are shown in Fig. 8a. For 𝑛 ≥ 1, the 

velocity enhancement occurs mainly in the first bend. On 

the other hand, both bends contribute equally in the case 

of shear-thinning fluids. Therefore, considering the bend 

combination, the overall enhancement ratio (𝜖) is more 

significant for shear-thinning fluids. For the representative 

case, the values of 𝜖 are obtained as 1.0026, 1.0019 and 

1.0003 for 𝑛 = 0.6, 1 and 1.4, respectively. 

Similar to the case of velocity enhancement, we 

predict the pressure drop separately due to the first and 

second bends. We introduce a parameter, viz., non-

dimensional pressure difference (𝜑), to gauge the pressure 

loss across the bend. For the first and second bends, 𝜑 is 

defined as follows: 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Variation of a few important parameters along 

the bend (a) Enhancement ratio, (b) Non-dimensional 

pressure difference and (c) Normalized secondary 

velocity 

 

𝜑𝐴𝐶 = (𝑃𝐴𝐴′ − 𝑃𝐶𝐶′)
1

2
𝜌𝑉𝑖

2⁄             (19) 

𝜑𝐶𝐸 = (𝑃𝐶𝐶′ − 𝑃𝐸𝐸′)
1

2
𝜌𝑉𝑖

2⁄             (20) 

Figure 8b displays that both 𝜑𝐴𝐶 and 𝜑𝐶𝐸 increase 

with a decrease of 𝑛. From Fig. 8a and 8b, we conclude 

that the higher the values of 𝜑 higher will be the 𝜖. 

Actually, the velocity enhancement occurs due to the 

conversion of the pressure head to kinetic energy. Finally, 

we determine 𝑉𝑠/𝑉𝑖 at the end of the first and second bends 

(i.e. on 𝐶𝐶′and 𝐸𝐸′), respectively. Here, 𝑉𝑠/𝑉𝑖 is  

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Distribution of pressure at different sections 

(𝑨𝑨′, 𝑪𝑪′and 𝑬𝑬′) along the bend inside bend (a) 

n=0.6, (b) n=1.0, (c) n=1.4 

 

indicative of the secondary kinetic energy evolved due to 

the presence of the bends. We compare the values of 𝑉𝑠/𝑉𝑖 

due to the two bends, as depicted in Fig. 8c. It is observed 

that the first bend promotes the strength of the secondary 

flow, whereas the second bend reduces the strength, 

reversing the flow's direction. The secondary flow 

strength is found to be more in power-law fluids than in 

Newtonian fluids, which is in line with the observations 

given by Yoon et al. (2017). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 10. Vorticity streamlines at the exit of the first bend (𝑪𝑪′) for (a) n=0.6, (b) n=1.0, (c) n=1.4; Vorticity 

streamlines at the exit of the second bend (𝑬𝑬′) for (d) n=0.6, (e) n=1.0, (f) n=1.4 
 

3.4 Pressure Variation Inside Bend 

Non-dimensional pressure (𝑃
1

2
𝜌𝑉𝑖

2⁄ ) contours are 

captured at three distinct sections, 𝐴𝐴′, 𝐶𝐶′and 𝐸𝐸′, for 

𝑛 = 0.6, 1 and 1.4 (Fig. 9). The planes  𝐴𝐴′, 𝐸𝐸′ and 𝐶𝐶′ 
are located at the first bend's entrance, the second bend's 

exit and their junction, respectively. A radial pressure 

gradient, either inward or outward, is observed on the 

three planes. In section 𝐴𝐴′, the pressure rises towards the 

inner core. The bend’s curvature reverses beyond 𝐶𝐶′, 

where the second bend starts. Accordingly,𝐶𝐶′ is the 

junction of the first bend's outer core and the second bend's 

inner core. At 𝐶𝐶′, the high-pressure zone is shifted 

towards the inner core of the second bend. Again, at 

section 𝐸𝐸′, the pressure rises towards the outer core of 

the second bend. This shift is attributed to a change in bend 

curvature at the exit of the second bend. Newtonian and 

non-Newtonian fluids exhibit similar qualitative trends,  

as depicted in Fig. 9.  The contour values demonstrate  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 11 Vorticity contours at the exit of the first bend (𝑪𝑪′) for (a) n=0.6, (b) n=1.0, (c) n=1.4, Vorticity contours 

at the exit of the second bend (𝑬𝑬′) for (d) n=0.6, (e) n=1.0, (f) n=1.4 
 

a continuous pressure drop along the length of the duct’s 

bend. 

3.5 Vorticity Streamlines 

The vorticity function is utilized to characterize the 

spinning motion of the continuum (fluid domain). 

Mathematically, vorticity, ω = ∇⃗⃗ × v⃗  , where, ∇⃗⃗  is the 

nabla operator, and v⃗  is the velocity vector at a point. We  

determine the in-plane vorticity streamlines using the 

vorticity components. Fig. 10 displays vorticity 

streamlines on planes 𝐶𝐶′ and 𝐸𝐸′for 𝑛 = 0.6, 1, 1.4. The 

opposite sign of vorticity indicates the presence of a pair 

of counter- rotating cells (Fig. 10 and 11). Since plane 𝐶𝐶′ 
is perpendicular to X-axis and 𝐸𝐸′ is perpendicular to Y-

axis (Fig.  2), the orientation of the negative and positive 

vorticity regions are subtly altered, as depicted in Fig. 11. 

Accordingly, the pattern of vorticity-streamlines changes, 

and the vertically aligned cells change their orientation to 

become horizontally aligned (Fig. 10). The reversal of 

bend curvature is responsible for a conversion of X-

vorticity to Y-vorticity, which affects the strength of 
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vortices. The counter-rotating vortices lose their strength 

while changing their orientation within the second bend. 

The drop of vorticity magnitude from 𝐶𝐶′ to 𝐸𝐸′ is more 

for Newtonian fluids. 

4. CONCLUSION  

This study investigates the characteristics of 

Newtonian and non-Newtonian fluid flow (shear thinning 

and shear thickening) through a pipe manifold which 

contains a double bend. The Ostwald–de Waele's power 

law model is adopted to predict the rheological behavior 

of the working fluids. The k − ε turbulence model is 

suitably used to solve the RANS equations for resolving 

the flow physics. The CFD results match well with the 

previous experimental data. The major observations lead 

to the following conclusions: 

• The symmetrical velocity profiles at the bend inlet 

become skewed towards the outer core of the curved 

pipe due to a non-uniform distribution of momentum 

caused by the centrifugal effect. 

• Internal flow through skewed pipe gives rise to 

Prandtl’s secondary flow of the first kind. A fully 

developed flow is disturbed when it enters bend or 

bend combinations. The flow regains its fully 

developed characteristic gradually after the bend. 

Consequently, the secondary flow progressively 

vanishes. This decay of secondary flow accelerates 

when the curvature ratio is large, and the Reynolds 

number is small. 

• The strength of the secondary flow at the bend's exit 

depends on the flow behavior index (n). It is higher 

for lower values of n.  

• The stream-wise velocity component exhibits a non-

axisymmetric distribution at the bend's exit, which 

attains axisymmetry within a short downstream 

length due to turbulent mixing. The exception is the 

non-Newtonian near-wall region which retains non-

axisymmetry due to spatially non-uniform wall stress 

governed by the constitutive behavior. 

• Some additional pressure loss due to bend is captured, 

associated with a simultaneous rise in area-weighted 

average velocity. We successfully quantify the 

velocity gain due to the bend by a newly defined 

dimensionless number, viz. enhancement ratio (ϵ). 

The value of ϵ is found to be the maximum for shear-

thinning fluid flow and the minimum for shear-

thickening fluid flow. Similarly, the amount of 

pressure drop rises with a decrease in n.  

• A radial pressure gradient acts inside the double bend, 

which directs inward or outward depending on the 

curvature. The radial pressure gradient is the motive 

force for the secondary flow. 

• Two counter-rotating vortices are captured inside the 

first bend portion of the double bend geometry, losing 

their strength in the second bend. A more significant 

drop of vorticity magnitude within the second bend 

portion is observed when n tends to 1. 
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