Application of an Open-Source OpenFoam for Fluid-Structure Interaction Analysis of the Horizontal-Axis Wind Turbine Blade

Document Type : Regular Article

Authors

1 Department of Hydraulics, Faculty of Civil Engineering, Hassiba Benbouali University of Chlef 02000, Algeria

2 Laboratory of Mechanics and Energy (LME) Department of Mechanical Engineering, Faculty of Technology, Hassiba Benbouali university of Chlef 02000, Algeria

Abstract

This study investigates numerical simulation for fluid-structure interaction in wind turbine blades, emphasizing the influence of dimensionless numbers. Utilizing OpenFoam, the Navier-Stokes equation is accurately solved with the PISO algorithm, ensuring proper interface conditions. The icoFsiFoam solver is validated through dynamic testing, demonstrating its effectiveness. In contrast to the widely adopted Blade Element Momentum Theory (BEMT), our approach focuses on analyzing blade deformation and resonance phenomena, capturing intricate deformations and stress concentrations. Our investigation explores the impact of reduced velocity on blade behavior across a range of 0.105 to 0.145, while consistently maintaining crucial dimensionless numbers such as Reynolds number (Re = 10⁶), Froude number (Fr = 4.93), and Cauchy number ( Cy = 10-5). The outcomes of this study significantly contribute to the understanding of fluid-structure interaction in wind turbine blades. By examining the oscillatory behavior of the blades, we observe trends similar to those predicted by BEMT. However, our approach surpasses BEMT by providing additional insights into stress concentrations and deformation modes. This advancement enables superior performance optimization and facilitates advanced blade analysis. The implications of our research are paramount for optimizing blade design and performance under varying reduced velocities. By incorporating the findings of this study, blade designers can make well-informed decisions to enhance the efficiency and durability of wind turbine technologies. The presented methodology and results provide a comprehensive investigation into the fluid-structure interaction of wind turbine blades, highlighting the importance of dimensionless numbers and their influence on blade behavior. Overall, this study offers valuable insights for improving wind turbine design and performance.

Keywords

Main Subjects


Adjiri, S., Dobrev, I., Benzaoui, A., Nedjari-Daaou, H., & Massouh, F. (2023). New Actuator Disk Model for the Analysis of Wind Turbines Wake Interaction with the Ground. Journal of Applied Fluid Mechanics, 16(1), 75-88. https://doi.org/10.47176/JAFM.16.01.1328
Agbormbai, J. T. (2021). A vortex ring theory for horizontal-axis wind turbines and experimental investigation of the performance characteristics of a novel vertical-axis wind turbine (Doctoral dissertation, University of Maryland]. Baltimore County). https://mdsoar.org/handle/11603/26039
Apsley, D. D., & Stansby, P. K. (2020). Unsteady thrust on an oscillating wind turbine: Comparison of blade-element momentum theory with actuator-line CFD. Journal of Fluids and Structures, 98, 103141. https://doi.org/10.1016/j.jfluidstructs.2020.103141
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (2023). Numerical investigations on the fluid behavior in the near wake of an experimental wind turbine model in the presence of the nacelle. Journal of Applied Fluid Mechanics, 16(1), 21-33. https://doi.org/10.47176/jafm.16.01.1382
Casillas Farfán, C., Solorio Díaz, G., López Garza, V., Galván González, S., & Figueroa, K. (2022). Novel induction blade design for horizontal axis wind turbines to improve starting phase: Cfd and testing analysis. Journal of Applied Fluid Mechanics, 15(6), 1635-1648. https://doi.org/10.47176/JAFM.15.06.1163
Cheng, H., Lin, W. E. I., Bin, Z. H. O. U., Qiang, H. E., & Peng, X. I. A. O. (2017). Numerical study of lateral wind effect on parachute dropping based on finite element method. Mechanics, 23(1), 126-131. https://doi.org/10. 5755/J01.MECH.23.1.13679
Dahmane, M., Boutchicha, D., & Adjlout, L. (2016). One-way fluid structure interaction of pipe under flow with different boundary conditions. Mechanics, 22(6),495-503. https://doi.org/10.5755/J01.MECH.22.6.13189
de Langre, E. (2001). Simulation numérique en interaction fluide-structure. La Houille Blanche, (1), 34-38. https://doi.org/10.1051/lhb/2001005
Degroote, J. (2013). Partitioned simulation of fluid-structure interaction: Coupling black-box solvers with quasi-Newton techniques. Archives of computational methods in engineering, 20(3), 185-238. https://doi.org/10.1007/s11831-013-9085-5
Ebrahimi, E., Amini, Y., & Imani, G. (2021). Heat transfer characteristics of a circular cylinder covered by a porous layer undergoing vortex-induced vibration. International Journal of Thermal Sciences, 166, 106974. https://doi.org/10.1016/j.ijthermalsci.2021.106974
Gopalkrishnan, R. (1993). Vortex-induced forces on oscillating bluff cylinders. Woods Hole Oceanographic Institution MA. https://apps.dtic.mil/sti/citations/ADA265056
Hover, F. S., Techet, A. H., & Triantafyllou, M. S. (1998). Forces on oscillating uniform and tapered cylinders in cross flow. Journal of Fluid Mechanics, 363, 97-114. https://doi.org/10.1017/S0022112098001074
Hsu, M. C., & Bazilevs, Y. (2012). Fluid–structure interaction modeling of wind turbines: simulating the full machine. Computational Mechanics, 50, 821-833. https://doi.org/10.1007/s00466-012-0772-0
Lee, H. M., & Kwon, O. J. (2019). Numerical simulation of horizontal axis wind turbines with vortex generators. International Journal of Aeronautical and Space Sciences, 20, 325-334. https://doi.org/10.1007/s42405-018-0118-z
Lololau, A., Soemardi, T. P., Purnama, H., & Polit, O. (2021). Composite multiaxial mechanics: laminate design optimization of taper-less wind turbine blades with ramie fiber-reinforced polylactic acid. International Journal of Technology, 12(6), 1273-1287. https://doi.org/10.14716/ijtech.v12i6.5199
Mannion, B., Leen, S. B., & Nash, S. (2020). Development and assessment of a blade element momentum theory model for high solidity vertical axis tidal turbines. Ocean Engineering, 197, 106918. https://doi.org/10.1016/j.oceaneng.2020.106918
Mdouki, R. (2020). Parametric study of magnus wind turbine with spiral fins using bem approach. Journal of Applied Fluid Mechanics, 14(3), 887-895. https://doi.org/10.47176/JAFM.14.03.31789
Moghimi, M., & Motawej, H. (2020). Comparison aerodynamic performance and power fluctuation between darrieus straight-bladed and gorlov vertical axis wind turbines. Journal of Applied Fluid Mechanics, 13(5), 1623-1633. https://doi.org/10.36884/jafm.13.05.30833
Mohebbi, M., & Hashemi, M. (2017). Designing a 2-degree of freedom model of an unbalanced engine and reducing its vibrations by active control. Civil Engineering, 8(5). https://doi.org/10.14716/ijtech.v8i5.868
Năstase, E. V. (2021). Studies on the design models of horizontal axis wind turbines. Bulletin of the Polytechnic Institute of Iași. Machine constructions Section, 67(1), 9-18. https://doi.org/10.2478/bipcm-2021-0001
Panjwani, B., Popescu, M., Samseth, J., Meese, E., & Mahmoudi, J. (2014). OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture. ITM Web of Conferences (Vol. 2, p. 04001). EDP Sciences. https://doi.org/10.1051/itmconf/20140204001
Sabino, D., Fabre, D., Leontini, J. S., & Jacono, D. L. (2020). Vortex-induced vibration prediction via an impedance criterion. Journal of Mechanics, 890, A4. https://doi.org/10.1017/jfm.2020.104
Sarpkaya, T. (2004). A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005
Sayed, M., Lutz, T., Krämer, E., Shayegan, S., & Wüchner, R. (2019). Aeroelastic analysis of 10 MW wind turbine using CFD–CSD explicit FSI-coupling approach. Journal of Fluids and Structures, 87, 354-377. https://doi.org/10.1016/j.jfluidstructs.2019.03.023
Schaffarczyk, A. P., & Schaffarczyk, A. P. (2014). Application of Vortex Theory. Introduction to Wind Turbine Aerodynamics, 99-119. https://doi.org/10.1007/978-3-642-36409-9_6
Scovazzi, G., & López Ortega, A. (2012). Algebraic flux correction and geometric conservation in ALE computations. Flux-Corrected Transport: Principles, Algorithms, and Applications, 299-343. https://doi.org/10.1007/978-94-007-4038-9_9
Sjah, J., & Vincens, E. (2017). Fluid–solid interaction in the case of piping erosion: validation of a SPH-ALE code. International Journal of Technology, 8(6), 1040-1049. https://doi.org/10.14716/ijtech.v8i6.729
Soti, A. K., & De, A. (2020). Vortex-induced vibrations of a confined circular cylinder for efficient flow power extraction. Physics of Fluids, 32(3), 033603. https://doi.org/10.1063/1.5131334
Takizawa, K., Spielman, T., Moorman, C., & Tezduyar, T. E. (2012). Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design. Journal of Applied Mechanics, 79(1). https://doi.org/10.1115/1.4005070
Tang, D., Bao, S., Luo, L., Zhu, H., & Cui, H. (2019). A CFD/CSD coupled method with high order and its applications in flow induced vibrations of tube arrays in cross flow. Annals of Nuclear Energy, 130, 347-356. https://doi.org/10.1016/j.anucene.2019.03.003
Wu, Y., Lien, F. S., Yee, E., & Chen, G. (2023). Numerical investigation of flow-induced vibration for cylinder-plate assembly at low Reynolds number. Fluids, 8(4), 118. https://doi.org/10.3390/fluids8040118
Yang, Z., Yang, C., Zhao, J., & Wu, Z. (2022). Fluid–structure interaction dynamic response of rocket fairing in falling phase. Aerospace, 9(12), 741. https://doi.org/10.3390/aerospace9120741