Adjiri, S., Dobrev, I., Benzaoui, A., Nedjari-Daaou, H., & Massouh, F. (2023). New Actuator Disk Model for the Analysis of Wind Turbines Wake Interaction with the Ground.
Journal of Applied Fluid Mechanics, 16(1), 75-88.
https://doi.org/10.47176/JAFM.16.01.1328
Agbormbai, J. T. (2021).
A vortex ring theory for horizontal-axis wind turbines and experimental investigation of the performance characteristics of a novel vertical-axis wind turbine (Doctoral dissertation, University of Maryland]. Baltimore County).
https://mdsoar.org/handle/11603/26039
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (2023). Numerical investigations on the fluid behavior in the near wake of an experimental wind turbine model in the presence of the nacelle.
Journal of Applied Fluid Mechanics, 16(1), 21-33.
https://doi.org/10.47176/jafm.16.01.1382
Casillas Farfán, C., Solorio Díaz, G., López Garza, V., Galván González, S., & Figueroa, K. (2022). Novel induction blade design for horizontal axis wind turbines to improve starting phase: Cfd and testing analysis.
Journal of Applied Fluid Mechanics, 15(6), 1635-1648.
https://doi.org/10.47176/JAFM.15.06.1163
Cheng, H., Lin, W. E. I., Bin, Z. H. O. U., Qiang, H. E., & Peng, X. I. A. O. (2017). Numerical study of lateral wind effect on parachute dropping based on finite element method.
Mechanics, 23(1), 126-131.
https://doi.org/10. 5755/J01.MECH.23.1.13679
Degroote, J. (2013). Partitioned simulation of fluid-structure interaction: Coupling black-box solvers with quasi-Newton techniques.
Archives of computational methods in engineering, 20(3), 185-238.
https://doi.org/10.1007/s11831-013-9085-5
Ebrahimi, E., Amini, Y., & Imani, G. (2021). Heat transfer characteristics of a circular cylinder covered by a porous layer undergoing vortex-induced vibration.
International Journal of Thermal Sciences, 166, 106974.
https://doi.org/10.1016/j.ijthermalsci.2021.106974
Hover, F. S., Techet, A. H., & Triantafyllou, M. S. (1998). Forces on oscillating uniform and tapered cylinders in cross flow.
Journal of Fluid Mechanics, 363, 97-114.
https://doi.org/10.1017/S0022112098001074
Lee, H. M., & Kwon, O. J. (2019). Numerical simulation of horizontal axis wind turbines with vortex generators.
International Journal of Aeronautical and Space Sciences, 20, 325-334.
https://doi.org/10.1007/s42405-018-0118-z
Lololau, A., Soemardi, T. P., Purnama, H., & Polit, O. (2021). Composite multiaxial mechanics: laminate design optimization of taper-less wind turbine blades with ramie fiber-reinforced polylactic acid.
International Journal of Technology, 12(6), 1273-1287.
https://doi.org/10.14716/ijtech.v12i6.5199
Mannion, B., Leen, S. B., & Nash, S. (2020). Development and assessment of a blade element momentum theory model for high solidity vertical axis tidal turbines.
Ocean Engineering, 197, 106918.
https://doi.org/10.1016/j.oceaneng.2020.106918
Moghimi, M., & Motawej, H. (2020). Comparison aerodynamic performance and power fluctuation between darrieus straight-bladed and gorlov vertical axis wind turbines.
Journal of Applied Fluid Mechanics, 13(5), 1623-1633.
https://doi.org/10.36884/jafm.13.05.30833
Mohebbi, M., & Hashemi, M. (2017). Designing a 2-degree of freedom model of an unbalanced engine and reducing its vibrations by active control.
Civil Engineering, 8(5).
https://doi.org/10.14716/ijtech.v8i5.868
Năstase, E. V. (2021). Studies on the design models of horizontal axis wind turbines.
Bulletin of the Polytechnic Institute of Iași. Machine constructions Section, 67(1), 9-18.
https://doi.org/10.2478/bipcm-2021-0001
Panjwani, B., Popescu, M., Samseth, J., Meese, E., & Mahmoudi, J. (2014).
OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture. ITM Web of Conferences (Vol. 2, p. 04001). EDP Sciences.
https://doi.org/10.1051/itmconf/20140204001
Sabino, D., Fabre, D., Leontini, J. S., & Jacono, D. L. (2020). Vortex-induced vibration prediction via an impedance criterion.
Journal of Mechanics, 890
, A4
. https://doi.org/10.1017/jfm.2020.104
Sayed, M., Lutz, T., Krämer, E., Shayegan, S., & Wüchner, R. (2019). Aeroelastic analysis of 10 MW wind turbine using CFD–CSD explicit FSI-coupling approach.
Journal of Fluids and Structures, 87, 354-377.
https://doi.org/10.1016/j.jfluidstructs.2019.03.023
Scovazzi, G., & López Ortega, A. (2012). Algebraic flux correction and geometric conservation in ALE computations.
Flux-Corrected Transport: Principles, Algorithms, and Applications, 299-343.
https://doi.org/10.1007/978-94-007-4038-9_9
Sjah, J., & Vincens, E. (2017). Fluid–solid interaction in the case of piping erosion: validation of a SPH-ALE code.
International Journal of Technology, 8(6), 1040-1049.
https://doi.org/10.14716/ijtech.v8i6.729
Soti, A. K., & De, A. (2020). Vortex-induced vibrations of a confined circular cylinder for efficient flow power extraction.
Physics of Fluids, 32(3), 033603.
https://doi.org/10.1063/1.5131334
Takizawa, K., Spielman, T., Moorman, C., & Tezduyar, T. E. (2012). Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design.
Journal of Applied Mechanics, 79(1).
https://doi.org/10.1115/1.4005070
Tang, D., Bao, S., Luo, L., Zhu, H., & Cui, H. (2019). A CFD/CSD coupled method with high order and its applications in flow induced vibrations of tube arrays in cross flow.
Annals of Nuclear Energy, 130, 347-356.
https://doi.org/10.1016/j.anucene.2019.03.003
Wu, Y., Lien, F. S., Yee, E., & Chen, G. (2023). Numerical investigation of flow-induced vibration for cylinder-plate assembly at low Reynolds number.
Fluids, 8(4), 118.
https://doi.org/10.3390/fluids8040118