Allen., J. H., & E. W. Perkins (1951). A study of effects of viscosity on flow over slender inclined bodies of revolution. NACA-TR-. 048.
Chen, J., F. Xiaoqiang, X. Bing, & W. Yi (2020). Shape optimization of the cross-section for noncircular hypersonic missile forebody.
International Journal of Aerospace Engineering, Volume 2020, Article ID 8885494, 9 pages. https://doi.org/10.1155/2020/8885494
Ishimatsu, T., & Morishita, E. (2005). Taylor-maccoll hypervelocity analytical solutions.
Transactions of the Japan Society for Aeronautical and Space Sciences 48 (159), 46-48.
https://doi.org/10.2322/tjsass.48.46
Jorgensen, L. H. (1958). Elliptic cones alone and with wings at supersonic speeds. NACA Rep. 1376
Kaattari, G., E. (1970). A method for predicting pressure on elliptic cones at supersonic speeds. NASA Technical Note, NASA TN D-5952.
Kahane, A., & Solarski, A. (1953). Supersonic flow about slender bodies of elliptic cross section.
Journal of the Aeronautical Sciences, 20(8).
https://doi.org/10.2514/8.2719
Kopal, Z. (1947). Tables of supersonic flow around cones (No. 1). Mass. Inst. of Technology.
Krishnan, G., G. Akhil, & S. R. Nagaraja (2017). Drag reduction for hypersonic reentry vehicles. International Journal of Mechanical Engineering and Technology, 8(10), 878–885.
Nithin, D., & Vinod K. (2022). Performance characteristics of asymmetric body in hypersonic flow.
Advances in Mechanical and Materials Technology, Lecture Notes in Mechanical Engineering, 1091-1099.
https://doi.org/10.1007/978-981-16-2794-1_95
Pedro, P., Vassilis, T., & Daniel, R. (2013
). Accurate parabolic navier-stokes solutions of the supersonic flow around an elliptic cone. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, Texas.
https://doi.org/10.2514/6.2013-670
Rahimi, A. B. (2012). Comparison of lift and drag forces for some conical bodies in supersonic flow using perturbation techniques. Ije Transactions A, 25(3): 231-238. https://doi.org/10.5829/idosi.ije.2012.25.03a.05
Rajesh, R., & Rakesh, S. G. (2017). Effect of dimensions of sharp spiked cylinder on the buzz phenomenon subjected to hypersonic flow. International Journal of Fluid Mechanics Research, 44(6):469–485. https://doi.org/10.1615/InterJFluidMechRes.2017019991
Rajesh, R., & Rakesh, S. G. (2020). Effect on the drag coefficient of various spiked cylinders during buzz phenomenon subjected to hypersonic flows.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6), 6.
https://doi.org/10.1007/s40430-020-02384-5
Saiprakash, M., SenthilKumar, C., Sunil, G. K., Rampratap, S. P., Shanmugam, V., & Balu, G. (2019). Visualization of shock wave phenomenon around a sharp cone model at hypersonic mach number in a shock tunnel using high speed schlieren facility
. Journal of Applied Fluid Mechanics, 12(2), 461-468
. https://doi.org/10.29252/jafm.12.02.29250
Sanjay Krishna, M. S., & Kotebavi, V. (2021).
Study of aerodynamic and aerothermal characteristics of blunted power law bodies. International Conference on Technology Innovation in Mechanical Engineering, TIME 2021, Lecture Notes in Mechanical Engineering.
https://doi.org/10.1007/978-981-16-7909-4_66
Sims, J. L. (1964). Tables for supersonic flow around right circular cones at zero angle of attack. NASA-SP-3004
Sreekanth, N., Akhil, J., & Nagaraja, S. R. (2016). Design and analysis of secondary spike on blunt head. Indian Journal of Science and Technology, 9(45), 1-8. https://doi.org/10.17485/ijst/2016/v9i45/104649
Taylor, G. I., & Maccoll, J. W. (1933). The air pressure on a cone moving at high speeds—II.
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 139(838), 298-311.
https://doi.org/10.1098/rspa.1933.0017
Wang, L. & Kong D. (2023). Study on pressure reconstruction method of explosion shock wave. Journal of Applied Fluid Mechanics,16(7), 1442-1454. https://doi.org/10.47176/jafm.16.07.1690