Transient Analysis of the Flow Behavior under a Small Leakage Accident in Feed Water Pipeline

Document Type : Regular Article

Authors

Nuclear Research Center of Birine, B. P. 180, Ain Oussera, Djelfa, 1720, Algeria

Abstract

Feedwater leakages due to excessive loads and cracking caused by corrosion or fatigue failure can affect the reliability of the production facilities. In the present work, a numerical study of a small leakage accident type SB-LOCA on the feed water pipeline was investigated using Computational Fluid Dynamics (CFD) and Relap5 computer codes. The aim is to understand the behavior of the incompressible water flow and its effect on the relevant parameters at the leakage location vicinity, including the mass flow rate, velocity, pressure, and temperature. For this, a mathematical model was developed and validated to evaluate the release of water through the pipe, which is mainly based on the variables that may affect the leakage. The results of CFD show that the leakage has important effects on the distribution of main parameters of the water flow through the pipe, which has an identical outcome from the Relap5 code simulation. The change of fluid velocity only has a little impact on the flow behavior at the leakage region.

Keywords

Main Subjects


Araújo, M. V., Farias Neto, S. R., Lima, A. G. B., & Luna, F. D. T. (2014). Hydrodynamic study of oil leakage in pipeline via CFD. Advances in Mechanical Engineering, 6, January - December 2014. https://doi.org/10.1155/ 2014/170178.
Araújo, M. V., de Luna, F. D. T.  Barbosa, E. S., de Farias Neto, S. R., & de Lima, A. G. B. (2013). Numerical study of oil flow in tee junction with leaks. Advances in Petroleum Exploration and Development, 6(2), 1-11. https://doi.org/10.3968/j.aped. 1925543 820130602.1803.
Bapista, R. M., Quadri, M. B., Machado, R. A. F., Bolzan, A., Nogueira, A. L., Mariano, G., & Lopez, T. J. (2007). Effective Interfacial Tension and Geometrical Parameters Relationship for the Description of Oil Leakages from Submarine Pipelines. Chemical Engineering Transactions, Edited by Sauro Pierucci, 11. ISBN: 978-88-95608-00-6.
Ben-Mansour, R., Habib, M., Khalifa, A., Youchef-Toumi, K., & Chatzigeorgiou, D. (2011). Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction. Computers & Fluids, 57, 110-123. https://doi.org/10.1016/j.compfluid.2011. 12.016.
Carlson, K. E., Riemke, R. A., Rouhani, S. Z., Shumway, R. W., & Weaver, W. L. (1990). Relap5/Mo3.2 Code Manual Volume III: Developmental Assessment Problems. https://www. nrc.gov/docs/ML1103/ ML110330201. pdf.
Cheridi, A. L., & Loubar, A., Dadda, A., & Bouam, A. (2019a). Modeling and simulation of a natural circulation water-tube steam boiler. SN Applied Science, 1, 1405. https://doi.org/10. 1007/s42452-019-1452-x.
Cheridi, A. L., Chaker, A., & Loubar, A. (2019b). Numerical simulation of the accidental transient of an industrial steam boiler. Chapter in book: Heat and mass Transfer-Advances in science and technology applications, Intech Open Edition.
Cheridi, A. L., Chaker, A., & Loubar, A. (2016). Numerical simulation of a 374 Tons/h water-tube steam boiler following a feedwater line break. Annals of Nuclear Energy, 9, 27-35. http://dx.doi.org/10.1016 /j.anucene.06. 021.
de Sousa, C. A., & Oldrich, J. R. (2017). Influence of oil leakage in the pressure and flow rate behaviors in pipeline, Latin American Journal of Energy Research-Lajer, 4(1), 17-29. http://dx.doi.org/10.21712/lajer.2017.v4. n1.p17-29.
de Sousa, J.V.N., Sodré, C.H., de Lima, A. G. B., & de Farias Neto, S. R. (2013). Numerical analysis of heavy oil-water flow and leak detection in vertical pipeline. Advances in Chemical Engineering and Science, 3, 9-15. http://dx.doi.org/10.4236/aces.2013.31002.
Edrisi, A., & Kam, S. I. (2013). mechanistic leak-detection modeling for single gas-phase pipelines: lessons learned from fit to field-scale experimental data, Advances in Petroleum Exploration and Development, 5(1), 22-36. https://doi.org/10.3968/j.aped.19255438 20130501.1027.
Fan, W., Peng, C., Chen, Y., & Guo, Y. (2016). A new CFD modeling method for flow blockage accident investigations. Nuclear Engineering & Design, 33, 31-41. https://doi.org/10.1016/j.nucengdes. 2016. 04.006.
Fu, H., Yang, L., Liang, H., Wang, S., & Ling, K. (2020). Diagnosis of the single leakage in the fluid pipeline through experimental study and CFD simulation. Journal of Petroleum Science and Engineering, 193, 107437. https://doi.org/10.1016/j.petrol.2020.107437.
Fu, J. M., Zhao, H. X., Chen, G. M., & Zheng, X. Y. (2014). Impact of a hole’s geometrical characteristics on the aperture leakage of natural gas pipelines. Natural Gas Industry, 34(11), 128-133. https://doi.org/10.3787/j.issn.1000.0967. 2014.11.018.
Kaliatka, A., & Valincius, M. (2012). Modeling of pipe break accident in a district heating system using Relap5 computer code. Energy, 44, 813-819. https://doi.org/10.1016.j.energy.energy.2012.05.011.
Kostowski, W. J., & Skorek, J. (2012). Real gas flow simulation in damaged distribution pipelines. Energy, 45(1), 481-488. https://doi.org/10. 1016/j.energy.2012.02.076.
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Michel, F. A., & David, R. H., J. (1991). Matériaux-Microstructures et mise en œuvre. 2, 382, 4eme Edition, Dunod. ISBN : 2880744733.
Mutiu, A. A., Aditya, K., & Wai-Keung, F. (2021). Numerical study of pipeline leak detection for gas-liquid stratified flow, Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2021.104054.
Ong, Y. W., & Siti, U. M. (2019). Computational fluid dynamics analysis on single leak and double leaks subsea pipeline leakage, CFD Letters, 11(2). 95-107.
Paolo, O. (2006). Boiler Design, Maintenance and Safety Study Guide, Boiler Operation Maintenance & Safety, Study Guide for MTAA Boiler Operator Trainee Certefication, SGBO001 306.
Rahmani, A., Bouchami, T., Bélaid, S., Bousbia, S. A., & Boulheouchat, M. H. (2009). Assessment of boiler tubes overheating mechanisms during a postulated loss of feedwater accident. Applied Thermal Engineering, 29, 501-508. https://doi.org/10.1016/j.applthermaleng.2008.03.008.
Shehadeh, M., & Shahata, A. (2013). Modelling the effect of incompressible leakage patterns on rupture area in pipeline, CFD Letters, 5(4), 132-142.
Sun, Y., Cao, X., & Liang, F. (2019). Investigation on underwater spreading characteristics and migration law of oil leakage from damaged submarine pipelines. Proc. Saf. Environ. Protect, (127), 329-347. https://doi.org/10.1016/j. psep.2019.05.030.
Ulrich, B., & Paolo, E. (2017). Numerical analysis of two experiments related to thermal fatigue. Nuclear Engineering and Technology, 49(4), 675-691. https://doi.org/10.1016/j.net.2017.01.018.
Zeng, Y., & Luo, R. (2019). Numerical analysis on pipeline leakage characteristics for incompressible flow. Journal of Applied Fluid Mechanics, 12(2), 485-494. https://doi.org/10.29252/ JAFM.12.02. 28612.
Zhao, J. H., & Tan, Y. F (2011). Experiment study on subcritical flow nozzle model in the gas pipelines. Journal of Harbin Institute of Technology, 43, 84-87.
Zheng, M., & Hong, G. Z. (2017). Numerical investigation on impacts of leakage sizes and pressures of fluid convey- ing pipes on aerodynamic behaviors. Journal of Vibro-engineering, 19(7), 5434-5447.  https://doi.org/10. 21595/jve.2017.17389.