Araújo, M. V., Farias Neto, S. R., Lima, A. G. B., & Luna, F. D. T. (2014). Hydrodynamic study of oil leakage in pipeline via CFD. Advances in Mechanical Engineering, 6, January - December 2014. https://doi.org/10.1155/ 2014/170178.
Araújo, M. V., de Luna, F. D. T. Barbosa, E. S., de Farias Neto, S. R., & de Lima, A. G. B. (2013). Numerical study of oil flow in tee junction with leaks.
Advances in Petroleum Exploration and Development, 6(2), 1-11. https://doi.org/
10.3968/j.aped. 1925543 820130602.1803.
Bapista, R. M., Quadri, M. B., Machado, R. A. F., Bolzan, A., Nogueira, A. L., Mariano, G., & Lopez, T. J. (2007). Effective Interfacial Tension and Geometrical Parameters Relationship for the Description of Oil Leakages from Submarine Pipelines. Chemical Engineering Transactions, Edited by Sauro Pierucci, 11. ISBN: 978-88-95608-00-6.
Ben-Mansour, R., Habib, M., Khalifa, A., Youchef-Toumi, K., & Chatzigeorgiou, D. (2011). Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction.
Computers & Fluids, 57, 110-123. https://doi.org/
10.1016/j.compfluid.2011. 12.016.
Carlson, K. E., Riemke, R. A., Rouhani, S. Z., Shumway, R. W., & Weaver, W. L. (1990). Relap5/Mo3.2 Code Manual Volume III: Developmental Assessment Problems.
https://www. nrc.gov/docs/ML1103/ ML110330201. pdf.
Cheridi, A. L., Chaker, A., & Loubar, A. (2019b). Numerical simulation of the accidental transient of an industrial steam boiler. Chapter in book: Heat and mass Transfer-Advances in science and technology applications, Intech Open Edition.
Cheridi, A. L., Chaker, A., & Loubar, A. (2016). Numerical simulation of a 374 Tons/h water-tube steam boiler following a feedwater line break.
Annals of Nuclear Energy, 9, 27-35.
http://dx.doi.org/10.1016 /j.anucene.06. 021.
de Sousa, J.V.N., Sodré, C.H., de Lima, A. G. B., & de Farias Neto, S. R. (2013). Numerical analysis of heavy oil-water flow and leak detection in vertical pipeline.
Advances in Chemical Engineering and Science, 3, 9-15. http://dx.doi.org/
10.4236/aces.2013.31002.
Edrisi, A., & Kam, S. I. (2013). mechanistic leak-detection modeling for single gas-phase pipelines: lessons learned from fit to field-scale experimental data, Advances in Petroleum Exploration and Development, 5(1), 22-36. https://doi.org/10.3968/j.aped.19255438 20130501.1027.
Fu, H., Yang, L., Liang, H., Wang, S., & Ling, K. (2020). Diagnosis of the single leakage in the fluid pipeline through experimental study and CFD simulation.
Journal of Petroleum Science and Engineering, 193, 107437.
https://doi.org/10.1016/j.petrol.2020.107437.
Fu, J. M., Zhao, H. X., Chen, G. M., & Zheng, X. Y. (2014). Impact of a hole’s geometrical characteristics on the aperture leakage of natural gas pipelines.
Natural Gas Industry, 34(11), 128-133.
https://doi.org/10.3787/j.issn.1000.0967. 2014.11.018.
Kostowski, W. J., & Skorek, J. (2012). Real gas flow simulation in damaged distribution pipelines.
Energy, 45(1), 481-488.
https://doi.org/10. 1016/j.energy.2012.02.076.
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal, 32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Michel, F. A., & David, R. H., J. (1991). Matériaux-Microstructures et mise en œuvre. 2, 382, 4eme Edition, Dunod. ISBN : 2880744733.
Mutiu, A. A., Aditya, K., & Wai-Keung, F. (2021). Numerical study of pipeline leak detection for gas-liquid stratified flow, Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2021.104054.
Ong, Y. W., & Siti, U. M. (2019). Computational fluid dynamics analysis on single leak and double leaks subsea pipeline leakage, CFD Letters, 11(2). 95-107.
Paolo, O. (2006). Boiler Design, Maintenance and Safety Study Guide, Boiler Operation Maintenance & Safety, Study Guide for MTAA Boiler Operator Trainee Certefication, SGBO001 306.
Rahmani, A., Bouchami, T., Bélaid, S., Bousbia, S. A., & Boulheouchat, M. H. (2009). Assessment of boiler tubes overheating mechanisms during a postulated loss of feedwater accident.
Applied Thermal Engineering, 29, 501-508.
https://doi.org/10.1016/j.applthermaleng.2008.03.008.
Shehadeh, M., & Shahata, A. (2013). Modelling the effect of incompressible leakage patterns on rupture area in pipeline, CFD Letters, 5(4), 132-142.
Sun, Y., Cao, X., & Liang, F. (2019). Investigation on underwater spreading characteristics and migration law of oil leakage from damaged submarine pipelines.
Proc. Saf. Environ. Protect, (127), 329-347.
https://doi.org/10.1016/j. psep.2019.05.030.
Zeng, Y., & Luo, R. (2019). Numerical analysis on pipeline leakage characteristics for incompressible flow.
Journal of Applied Fluid Mechanics, 12(2), 485-494. https://doi.org/
10.29252/ JAFM.12.02. 28612.
Zhao, J. H., & Tan, Y. F (2011). Experiment study on subcritical flow nozzle model in the gas pipelines. Journal of Harbin Institute of Technology, 43, 84-87.
Zheng, M., & Hong, G. Z. (2017). Numerical investigation on impacts of leakage sizes and pressures of fluid convey- ing pipes on aerodynamic behaviors.
Journal of Vibro-engineering, 19(7), 5434-5447.
https://doi.org/10. 21595/jve.2017.17389.