Abadie, T., Xuereb, C., Legendre, D., & Aubin, J. (2013). Mixing and recirculation characteristics of gas-liquid Taylor flow in microreactors.
Chemical Engineering Research and Design,
91(11), 2225–2234.
https://doi.org/10.1016/j.cherd.2013.03.003
Abdollahi, A., Norris, S. E., & Sharma, R. N. (2020). International journal of heat and mass transfer pressure drop and film thickness of liquid-liquid taylor flow in square microchannels.
International Journal of Heat and Mass Transfer,
156, 119802.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119802
Asadolahi, A. N., Gupta, R., Fletcher, D. F., & Haynes, B. S. (2011). CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow.
Chemical Engineering Science,
66(22), 5575–5584.
https://doi.org/10.1016/j.ces.2011.07.047
Ba, Y., Liu, H., Sun, J., & Zheng, R. (2015). Three dimensional simulations of droplet formation in symmetric and asymmetric T-junctions using the color-gradient lattice Boltzmann model.
International Journal of Heat and Mass Transfer,
90, 931–947.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.023
Bayareh, M., Nasr Esfahany, M., Afshar, N., & Bastegani, M. (2020). Numerical study of slug flow heat transfer in microchannels.
International Journal of Thermal Sciences,
147(September 2019), 106118.
https://doi.org/10.1016/j.ijthermalsci.2019.106118
Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P., & Leshansky, A. M. (2019). Droplet generation at Hele-Shaw microfluidic T-junction.
Physics of Fluids,
31(2).
https://doi.org/10.1063/1.5086808
De menech, M., Garstecki, P., Jousse, F., & Stone, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction.
Journal of Fluid Mechanics,
595, 141–161.
https://doi.org/10.1017/S002211200700910X
Dessimoz, A. L., Cavin, L., Renken, A., & Kiwi-Minsker, L. (2008). Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors.
Chemical Engineering Science,
63(16), 4035–4044.
https://doi.org/10.1016/j.ces.2008.05.005
Dombrowski, N., Foumeny, E. A., Ookawara, S., & Riza, A. (1993). The influence of reynolds number on the entry length and pressure drop for laminar pipe flow.
The Canadian Journal of Chemical Engineering,
71(3), 472–476.
https://doi.org/10.1002/cjce.5450710320
Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction - Scaling and mechanism of break-up.
Lab on a Chip,
6(3), 437–446.
https://doi.org/10.1039/b510841a
Kashid, M. N., & Renken, A. (2010). Chemical engineering research and design CFD modelling of liquid – liquid multiphase microstructured reactor : Slug flow generation.
Chemical Engineering Research and Design,
88(3), 362–368.
https://doi.org/10.1016/j.cherd.2009.11.017
Kreutzer, M. T., Kapteijn, F., Moulijn, J. A., & Heiszwolf, J. J. (2005). Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels.
Chemical Engineering Science,
60(22), 5895–5916.
https://doi.org/10.1016/j.ces.2005.03.022
Li, X. B., Li, F. C., Yang, J. C., Kinoshita, H., Oishi, M., & Oshima, M. (2012). Study on the mechanism of droplet formation in T-junction microchannel.
Chemical Engineering Science,
69(1), 340-351.
https://doi.org/10.1016/j.ces.2011.10.048
Ma, H., Zhao, Q., Yao, C., Zhao, Y., & Chen, G. (2021). Effect of fluid viscosities on the liquid-liquid slug flow and pressure drop in a rectangular microreactor.
Chemical Engineering Science,
241, 116697.
https://doi.org/10.1016/j.ces.2021.116697
Mehdizadeh, A., Sherif, S. A., & Lear, W. E. (2011). International journal of heat and mass transfer numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels.
International Journal of Heat and Mass Transfer,
54(15–16), 3457–3465.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.040
Navaneetha Krishnan, R., Vivek, S., Chatterjee, D., & Das, S. K. (2010). Performance of numerical schemes in the simulation of two-phase free flows and wall bounded mini channel flows.
Chemical Engineering Science,
65(18), 5117–5136.
https://doi.org/10.1016/j.ces.2010.06.016
Nekouei, M., & Vanapalli, S. A. (2017). Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size.
Physics of Fluids,
29(3).
https://doi.org/10.1063/1.4978801
Qian, J., Li, X., Wu, Z., Jin, Z., Zhang, J., & Sunden, B. (2019). Slug formation analysis of liquid–liquid two-phase flow in t-junction microchannels.
Journal of Thermal Science and Engineering Applications,
11(5), 1–40.
https://doi.org/10.1115/1.4043385
Qin, N., Feng, Y., Wen, J. Z., & Ren, C. L. (2018). Numerical study on single flowing liquid and supercritical CO2 drop in microchannel: Thin film, flow fields, and interfacial profile.
Inventions,
3(2).
https://doi.org/10.3390/inventions3020035
Said, M., Nait Bouda, N., & Harmand, S. (2023). Numerical investigation of flow patterns and plug hydrodynamics in a 3D T-junction microchannel.
Microgravity Science and Technology,
35(1), 8.
https://doi.org/10.1007/s12217-022-10026-9
Silva, M. C. F., Campos, J. B. L. M., Miranda, J. M., & Araújo, J. D. P. (2020). Numerical study of single taylor bubble movement through a microchannel using different CFD packages.
Processes,
8(11), 1–19.
https://doi.org/10.3390/pr8111418
Talimi, V., Muzychka, Y. S., & Kocabiyik, S. (2012). International journal of multiphase flow a review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels.
International Journal of Multiphase Flow,
39, 88–104.
https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005
Tice, J. D., Lyon, A. D., & Ismagilov, R. F. (2004). Effects of viscosity on droplet formation and mixing in microfluidic channels.
Analytica Chimica Acta,
507(1), 73–77.
https://doi.org/10.1016/j.aca.2003.11.024
Van Steijn, V., Kreutzer, M. T., & Kleijn, C. R. (2007). μ-PIV study of the formation of segmented flow in microfluidic T-junctions.
Chemical Engineering Science,
62(24), 7505–7514.
https://doi.org/10.1016/j.ces.2007.08.068
Wang, C., Tian, M., Zhang, J., & Zhang, G. (2021). Experimental study on liquid–liquid two-phase flow patterns and plug hydrodynamics in a small channel.
Experimental Thermal and Fluid Science,
129(June), 110455.
https://doi.org/10.1016/j.expthermflusci.2021.110455
Wong, V. L., Loizou, K., Lau, P. L., Graham, R. S., & Hewakandamby, B. N. (2017). Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method.
Chemical Engineering Science,
174, 157–173.
https://doi.org/10.1016/j.ces.2017.08.027
Yan, Y., Guo, D., & Wen, S. Z. (2012). Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction.
Chemical Engineering Science,
84, 591–601.
https://doi.org/10.1016/j.ces.2012.08.055
Yao, C., Zheng, J., Zhao, Y., Zhang, Q., & Chen, G. (2019). Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel.
Chemical Engineering Journal,
373(May), 437–445.
https://doi.org/10.1016/j.cej.2019.05.051
Zhou, C. H., & Ai, J. Q. (2013). Mesh adaptation for simulation of unsteady flow with moving immersed boundaries.
International Journal for Numerical Methods in Fluids 72(4) 453–477.
https://doi.org/10.1002/fld.3751