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ABSTRACT 

A novel approach is presented for predicting compressible turbulent flow fields 

using a neural network-based data-driven method. Accurate prediction in 

turbulent regions heavily relies on the resolution of available data. Traditional 

methods, employing image-based techniques by mapping scattered 

computational fluid dynamics (CFD) data onto Cartesian grids, encounter data 

scarcity in critical areas such as the boundary layer and wake. Recently, 

convolutional neural networks (CNN) have gained prominence as the most 

widely referenced technique in fluid dynamics, utilizing flow field images as 

datasets for flow field prediction. However, CNN requires datasets with a high 

pixel density to enhance training accuracy in crucial regions, thereby increasing 

the input data volume and machine training time. To address this challenge, our 

proposed method deviates from using flow field images and instead generates 

datasets directly from the flow field properties of CFD grid points. By 

employing this approach, several advantages are realized. Firstly, the network 

benefits from the favorable characteristics of unstructured grids, such as varying 

point spacing near the object surface and in the far field, which effectively 

reduces the amount of input data and consequently the machine training cost. 

Secondly, the construction of the training dataset eliminates the need for 

interpolation or extrapolation, thereby preserving the accuracy of CFD data. In 

this case, a simple multilayer perceptron can be trained using the proposed 

dataset. Various flow field properties, including static pressure, turbulent kinetic 

energy, and velocity components, can be predicted with high accuracy within a 

few seconds. 
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1. INTRODUCTION 

 Despite the availability of high-performance 

computing tools (Marshall et al., 1997; Moureau et al., 

2011) and advanced computational fluid dynamics (CFD) 

techniques, optimization processes still face a significant 

computing time challenge due to the substantial number of 

numerical solution iterations required (Kashefi et al., 

2021) . Machine learning has emerged as a valuable 

approach in fluid dynamics, particularly for addressing 

this issue by reducing computation time and enabling the 

rapid acquisition of flow field data (Hallock & Holzäpfel, 

2018; Kavitha & Mukesh Kumar, 2018; Li et al., 2020). 

 One effective strategy involves combining Euler and 

RANS datasets (Ghoreyshi et al., 2013) or directly 

employing RANS flow field images through modern 

image processing techniques (Guo et al., 2016). These 

approaches serve the purpose of diminishing the time and 

complexity associated with constructing the model. The 

proliferation of diverse software tools has resulted in the 

accumulation of vast amounts of data generated from 

numerical modeling (Ansari et al., 2018; Yu et al., 2019). 

However, managing and analyzing such massive datasets 

can pose significant challenges, often leading to 

complexity and time-consuming processes. 

 In light of these challenges, researchers have recently 

turned their attention to the application of neural networks 

to expedite the determination of flow field parameters 

(Akbıyık & Yavuz, 2021; Brunton et al., 2020; 

Krizhevsky et al., 2017; Nagawkar & Leifsson, 2022; 

Thuerey et al., 2019; Wang et al., 2023; Wu et al., 2020a; 

Yuan et al., 2018). By leveraging neural networks, it 

becomes possible to obtain flow field predictions in 
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significantly shorter timeframes, offering a promising 

alternative to the computationally intensive numerical 

solutions. 

 One crucial aspect of employing neural networks for 

flow field prediction lies in the selection and utilization of 

suitable datasets. In image processing, the features of input 

images are initially extracted, after which the neural 

network is connected to the image through a Cartesian 

grid. This grid divides the image into smaller cells, with 

each segment connected to the neural network. However, 

due to the non-linear nature of the governing equations, 

determining the values of each region within the flow field 

becomes more intricate, complicating the integration of 

scattered CFD data with the convolutional neural network 

(CNN). 

 The utilization of the pixelation method has been 

observed in numerous studies to establish a connection 

between scattered CFD data and CNN (Hasegawa et al., 

2020; Miyanawala & Jaiman, 2019). This approach 

involves projecting CFD data onto a Cartesian grid, 

enabling the application of conventional CNNs for data 

training. Guo et al. (2016) employed CNN to predict the 

velocity field of steady laminar flow over various bluff 

shapes. For training purposes, they utilized 100,000 

velocity flow field images, each with a resolution of 

256×128 pixels. In their study, the training process 

achieved an overall accuracy of approximately 98% for 

predicting the velocity flow field. In their image 

representation, the geometry was encoded using a signed 

distance function (SDF). However, due to the low 

resolution of the input images with isotropic pixels, the 

predicted flow exhibited a lack of precision in proximity 

to the body. 

 Bhatnagar et al. (2019) employed CNN to predict 

steady RANS flow fields of U, V, and pressure by training 

the network with flow field data encompassing 4 Reynolds 

numbers, 3 airfoil shapes, and 21 angles of attack. 

However, their work encountered challenges as the 

network training error was approximately (10−2), leading 

to unacceptable absolute errors between the CFD and 

prediction results. Additionally, the limited number of 

samples within their dataset appeared to diminish the 

accuracy of the trained network. 

Sekar et al. (2019) successfully reduced the training error 

by employing a larger dataset, leading to enhanced 

prediction quality. Their dataset consisted of 5280 

elements, encompassing 6 angles of attack (AOA), 8 

Reynolds numbers, and 110 NACA airfoil shapes. Each 

input flow field consisted of 216 × 216 pixels. The training 

focused on flow field properties such as P, U, and V 

velocities, resulting in the utilization of 180 million 

parameters in the network. The network training error 

reached approximately (10−6). However, it is worth 

noting that the time required to train the model was 

approximately 62 days using an Intel Xeon 3.3 GHz 

processor, which is a considerable duration. 

 Li et al. (2020) employed CNN to train a model 

capable of predicting the flow field within an isolator 

using a dataset comprising various supersonic Mach 

numbers.  Du et al. (2021) utilized a combination of MLP 

and recurrent neural network to predict pressure and 

velocity flow fields across a wide range of Reynolds and 

Mach numbers. (Jin et al., 2018) proposed a CNN-based 

model that leveraged pressure measurements around a 

cylinder to predict the velocity flow field. Wu et al. 

(2021b) developed a model utilizing a generative 

adversarial network (GAN) and CNN to predict the 

pressure flow field around several supercritical airfoils. 

(Kashefi et al., 2021) employed CFD data to train a deep 

network for laminar flow field conditions using the 

PointNet architecture (Qi et al., 2017). 

 The dataset utilized in their study consisted of various 

shapes, including circles, squares, triangles, rectangles, 

ellipses, pentagons, and hexagons. During the training 

process, each cross-section experiences a distinct laminar 

flow field condition. For predicting flow fields of unseen 

geometries such as airfoils, interpolation techniques were 

employed based on other flow field geometries. The 

dataset comprised a total of 2595 instances, with 2076 

allocated for training and the remaining portion used for 

validation and testing purposes. 

 It is important to note that CNN, being a method 

primarily designed for image and pattern recognition 

(O’Shea & Nash, 2015), employs images (pixels) as its 

training dataset. Consequently, the crucial requirement for 

accurate flow field prediction in critical areas may not be 

adequately addressed due to the Cartesian representation 

of the input images. Additionally, using images as a 

dataset presents two significant challenges: training time, 

as demonstrated by Sekar et al. (2019), and prediction 

accuracy, as highlighted by Kashefi and Mukerji 2022. 

 In this article, we introduce the utilization of direct 

CFD data as a solution to overcome the aforementioned 

challenges. By solving the Navier-Stokes equations, flow 

field variables are obtained and stored within each cell of 

the computational grid. These variables, in addition to the 

Mach number and angle of attack, will serve as the dataset 

input for the neural network. The direct feeding of 

unaltered data into the neural network offers distinct 

advantages compared to image-based approaches. To 

construct the dataset, the compressible Navier-Stokes 

equations are solved using a finite volume cell-centered 

implicit scheme to acquire the external flow properties. 

 A two-equation 𝑘 − 𝜀 turbulence model is also used in 

conjunction with the wall function approach to model the 

Reynolds stress terms in the momentum equations. The 

neural network establishes a relationship between the 

airfoil geometry and input parameters, such as the Mach 

number and angle of attack, to predict the corresponding 

flow field properties. These flow field properties 

encompass pressure, velocity components, and kinetic 

energy. The dataset utilized in this study focuses 

exclusively on the RAE2822 airfoil geometry. Changes in 

the flow field are solely attributed to variations in the free-

stream variables, namely the Mach number and angle of 

attack. 

 To validate the performance of the trained neural 

network, flow field predictions will be conducted for 

Mach numbers and angles of attack that were not included 

in the dataset. These predictions will be compared against 



M. Nemati and A. Jahangirian / JAFM, Vol. 17, No. 1, pp. 60-74, 2024.  

 

62 

the corresponding results obtained from CFD simulations. 

These predictions will be compared against CFD results to 

evaluate the network's performance. The Mean Squared 

Error (MSE) will be used as a metric to quantify the error 

between the predicted flow field and the CFD data. 

Additionally, the absolute error distribution across the 

flow field will be analyzed to examine error propagation 

in various regions. 

 In the following section the general implementation 

road map of the proposed method is presented in section 

2. Neural network architecture and hyper parameters 

settings are also discussed in section 3. 

2. METHODOLOGY 

2.1 The Concept of the Proposed Method 

 The proposed method aims to overcome the limitations 

of image-based machine learning approaches, as outlined 

below: 

a) Interpolation or extrapolation involved in the pixelated 

images can introduce inaccuracies in the input data for 

machine learning. By utilizing CFD data instead, the need 

for interpolation and extrapolation is eliminated, resulting 

in more accurate predictions of CFD results. Moreover, 

employing the control volume method to discretize the 

governing flow equations during the data generation phase 

ensures the preservation of mass and momentum 

conservation. The dataset is generated from the values 

stored in these control volume cells, automatically 

preserving mass, momentum, and energy in the flow 

predicted by the trained model. In contrast to pixel-based 

methods, this data is free from artificial effects and can be 

directly utilized. 

b) In image-based methods, every region within the flow 

field is uniformly discretized with the same dimensions, 

assuming equal importance throughout. However, in the 

CFD-based approach, the computational grid employs a 

finer density of points in critical areas and a coarser 

distribution in others. This data distribution allows for 

reduced computing time while simultaneously improving 

prediction accuracy, particularly in regions of significance 

such as the boundary layer. 

 By utilizing CFD data, the proposed method enables 

the use of a neural network with a simpler structure, 

leading to significantly reduced training time. This is due 

to the substantially smaller number of computational grid 

data points compared to the pixel-based image methods. 

 As previously mentioned, turbulent flows are 

characterized by high velocity gradients near the surfaces 

of objects, and accurately predicting these flows relies 

heavily on the data resolution within these regions. 

However, conventional image-based machine learning 

methods employ relatively coarse Cartesian cells 

throughout the domain, which do not provide the 

necessary resolution near the objects (Kashefi et al., 

2021). Attempting to increase pixel resolution to capture 

finer details near objects results in a significant increase in 

the total number of pixels across the entire field. Thus, a 

trade-off is required between resolution in sensitive areas  

(a)                                             (b) 

(c)                                               (d) 

Fig. 1 Comparison between image-based (red) and CFD-

based (black) methods. (a) full region, (b) red box outer 

boundary region, (c) leading edge and (d) trailing edge 

 

and the total number of pixels to maintain the quality of 

the images. 

 Figure 1 illustrates a comparison between the CFD 

grid and the corresponding Cartesian cells utilized in the 

reference by Sekar et al. (2019), where high-quality 

images were employed during the training process. In Fig. 

1(a), it is evident that the area covered by the image-based 

method is significantly smaller than the CFD solution 

area. However, the image-based method requires a larger 

number of inputs. The red box in Fig. 1(a), measuring 

216×216, contains 46,656 pixels, whereas the total 

number of computational cells in the CFD method is only 

5436. 

 Figures 1(b)-(d) demonstrate the resolutions of the 

data for the image-based method and the proposed method 

in different regions of the domain. The image-based 

method demonstrates a lack of adaptive data point 

distribution across the domain, resulting in cells located 

far from the object being of the same size as those near the 

object. 

 The flowchart for machine learning using the direct 

CFD dataset is presented in Fig. 2. Various values of Mach 

number and angle of attack are utilized to generate the 

training dataset. The Mach number is selected from the 

range of 0.2 to 0.5, while the angle of attack ranges from 

1 to 5 degrees. The Latin hypercube sampling (LHS) 

method (McKay et al., 2000) is employed to ensure the 

selection of data from all defined ranges. 

 The values obtained for each flow parameter, such as 

pressure, kinetic energy, and velocities (u and v), are 

stored in numerical grid cells to serve as the input dataset 

for machine learning. The total number of computational 

cells in this particular flow field is significantly smaller, 

with only 5436 cells, in comparison to methods that utilize 

image-based datasets. This advantage is further enhanced 

by the fact that the training dataset is derived directly from 

the computational grid results, ensuring an appropriate 

data density in critical areas. This improved data distribution, 
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Fig. 2 Flowchart of machine learning based on direct CFD dataset 

 

 
Fig. 3 Neural network's training and prediction 

 

particularly for predicting turbulent flows, contributes to 

enhanced prediction accuracy. 

 Given that the input and output of the neural network 

are known, a supervised learning approach will be 

employed. As depicted in Fig. 3, the airfoil geometry, 

Mach number, and angle of attack will serve as the input, 

while the flow field, encompassing the values of flow 

parameters stored in the computational cells, will be the 

output of the machine learning process. 

 Upon completing the training process, the flow field 

can be predicted with high accuracy within a few seconds 

by providing new inputs that the machine has not 

encountered before. As demonstrated in subsequent 

sections, each flow parameter (p, k, u, v) may converge at 

different epoch values. Consequently, an independent 

machine, similar to the one depicted in Fig. 3, will be 

trained for each flow field. 

2.2 Computational Fluid Dynamics Method and 

Dataset Preparation 

 The non-dimensional differential form of the 

compressible Reynolds- Averaged Navier–Stokes 

(RANS) equations in two dimensions can be expressed in 

the conservative form as: 
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 The Navier–Stokes equations are completed by the 

perfect gas equation of state: 

2 2u +v R
P=ρRT,  E=e+ ,  e= T

2 γ-1
                                 (4) 

 The no-slip boundary condition is employed at the 

surface boundaries, while non-reflecting boundary 

conditions based on characteristic analysis are applied in 

the far field. Additionally, wall function conditions are 

taken into account for near-wall turbulent calculations. A 

two-equation k-ε turbulence model is employed in 

conjunction with the governing flow equations 

(Jahangirian & Hadidoolabi, 2005). This method allows a 

Y+ between 30-50 that reduces the number of 

computational cells in the boundary layer. 

 Within the machine, each combination of the Mach 

number and angle of attack at the input corresponds to a 

specific flow field at the output. To simplify the training 

process, it is assumed that the airfoil geometry remains 

constant, allowing the Mach number and angle of attack 

variables to be the sole factors influencing the flow field. 

During the training process, it is important to define the 

range of variations for each parameter to determine the 

training domain. 

 In this study, a total of 25 Mach numbers ranging from 

0.2 to 0.5 and 21 angle of attack values ranging from 1 to 

5 degrees, with equal intervals, result in a dataset 

comprising 525 combinations of Mach numbers and 

angles of attack. For each pair of free-stream Mach 

number and angle of attack, the pressure distribution, 

turbulent kinetic energy, and the U and V velocity 

components in the flow field will be extracted from the 

CFD simulations conducted for the RAE2822 airfoil. 

 Figure 4 depicts the numerical grid employed to 

extract training data from the CFD simulations conducted 

around the RAE2822 airfoil. The dimensionless airfoil has 

a length equal to one, which is placed in a domain with  

 

dimensions equal to 30 x 30. By utilizing an appropriate 

numerical grid, a greater amount of data is automatically 

provided in important areas while reducing data density in 

other regions. This approach accelerates the training stage 

and enhances prediction quality in critical areas. 

 The successive refinement approach presented by 

Jahangirian and Johnston (1996) is used for the 

unstructured grid generation that is capable of producing 

high-quality (regular) stretched cells inside the boundary 

and shear layers as well as isotropic cells outside these 

regions. The compressible Navier-Stokes equations are 

solved using a finite volume cell-centered implicit scheme 

that follows the work of Jahangirian and Hadidoolabi 

(2005). 

 The CFD process is initiated using 525 pairs of Mach 

number and angle of attack, as depicted in Fig. 3. The 

selection of the number of inputs for the Mach number and 

angle of attack is based on experience and compatibility 

with the machine's structure during the dataset preparation 

stage. 

 To ensure the quality of the training process, it is 

important to select a portion of the available data as 

validation data. The validation data is used to assess the 

network's performance at the end of each epoch during 

training. Additionally, testing data is used to evaluate the 

network's prediction quality on data that was not 

encountered during the training process. 

 In this study, 80% of the total input data 

(corresponding to 420 flow fields) was utilized as training 

data. Validation and testing data were allocated as 17% 

(90 flow fields) and 3% (15 flow fields) of the total data, 

respectively. The total amount of data processed during 

training is calculated as follows: 420 (sets of Mach 

number and angle of attack) × 4 (pressure, u velocity, v 

velocity, and kinetic energy) × 5436 (number of 

computational cells) = 9,132,480. This number is 

significantly lower compared to the data requirements of 

image-based methods. 

Fig. 4 Computational grid for RAE2822 used as 

neural network input 
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Fig. 5 MLP schematic structure 

 

3. MULTI-LAYER PERCEPTRON (MLP) 

TRAINING 

3.1 MLP Structure 

 The Multi-Layer Perceptron (MLP) is a type of neural 

network that comprises interconnected neurons (also 

known as node). It facilitates the mapping of inputs to 

outputs by passing data through layers within the network, 

starting from the initial layer and progressing towards the 

final layer. The output of each neuron is transmitted to the 

subsequent layer through weighted connections. During 

the training process, the weights are continuously adjusted 

until reaching their optimal values. 

 In the proposed method, the direct utilization of CFD 

data obviates the need for a complex network structure, 

making a simple MLP sufficient. Figure 5 illustrates the 

MLP structure employed in the current approach, which 

consists of three hidden layers, each containing 400 

neurons. The input layer encompasses the Mach number 

and angle of attack, while the output layer corresponds to 

the CFD results.  

 Due to the presence of nonlinear relationships in CFD 

data, this study employs a nonlinear activation function. 

 For nonlinear problems, an MLP typically consists of 

three layers: the input layer, hidden layer(s), and output 

layer. The complexity of the problem may require 

additional hidden layers. Increasing the number of hidden 

layers allows the neural network to capture more intricate 

aspects of the problem. However, surpassing a certain 

threshold of layers can lead to increased training time 

without additional accuracy gains. 

 During the training process, the weights connected to 

each neuron are updated, resulting in changes to the value 

of the neuron. The output of the kth c Equation 5. 

n
Y ( (  )  )weight input bkk ki i

i 1

=   +
=

         (5) 

 Where Y represents the value of each neuron, σ denotes 

the activation function, b represents the bias, and input 

corresponds to the input dataset. The indices i and k 

indicate the position of two neurons connected by a 

weight, while n represents the total number of neurons in 

each layer. 

 For this study, the Rectified Linear Unit (ReLU) 

activation function has been employed due to its 

adaptability to the problem at hand. ReLU is a nonlinear 

function that effectively prevents excessive neuron 

activation, thereby simplifying the neural network 

structure and accelerating the training process. 

 The weights and biases of the neurons are updated 

using the back-propagation algorithm during the training 

phase (Rumelhart et al., 1986). This algorithm aims to 

minimize the Mean Square Error (MSE) defined in 

Equation 6 through an optimization process. The MSE is 

used to measure the difference between the predicted 

values generated by the neural network and the actual CFD 

data throughout the entire computational domain.  

1 2( -  )

1

= 
=

n
MSE E Pi i

n i
 (6) 

 In Equation 6, n represents the total number of data 

points in each input, while E and P refer to the exact CFD 

data and the predicted values, respectively. For the 

optimization algorithm, Adam was selected due to its 

excellent performance when applied to CFD datasets 

(Ruder, 2016). Unlike traditional stochastic gradient 

descent methods, Adam calculates adaptive learning rates 

for different parameters by estimating the first and second 

moments of the gradient. 

3.2 MLP Hyper Parameters Setting 

 The MLP hyperparameters play a crucial role in 

determining the quality of the machine learning process. 

These parameters include the number of layers, nodes, 

activation functions, optimizer, learning rate, and batch 

size. Selecting the optimal parameters is essential to 

ensure the machine performs well on the validation data. 

The choice of hyperparameters is dependent on the 

dataset, and changing the dataset may require adjusting 

them accordingly. 

 There are two main approaches for selecting 

hyperparameters. The first approach involves trial and 

error, where parameters are chosen based on the user's 

experience with the dataset. However, this method can be 

time-consuming as it requires testing different 

combinations of hyperparameters on the validation data. 

Alternatively, the second approach automates the process 

of finding optimal parameters. Common methods for this 

include grid search, random search, and Bayesian model-

based optimization. Grid search exhaustively searches the 

entire parameter space, increasing the chances of finding 

optimal parameters. However, for large design spaces, the 

time required to find the optimal parameters can be 

significant. In such cases, random search can be used to 

randomly select parameter values within their search 

space. 

 Grid and random search methods lack previous 

evaluations and can often waste time evaluate 

inappropriate hyperparameters. In contrast, the Bayesian 

method selects optimal parameters based on previous 

evaluations, resulting in fewer evaluations of the true 

objective function (loss function). This method builds a 

probability model of the objective function, which is 

simpler than the original model, and uses it to find the best 

hyperparameter combination. The surrogate model selects  
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Table 1 MLP settings 

No. 

layers 

No. 

hidden 

neurons 

BS VS Optimizer AF 

5 400 64 17% Adam ReLU 

* BS: batch size, VS: validation size, AF: activation 

function 

 

 

Fig. 6 Comparison of the surface pressure coefficients  

for the RAE2822 airfoil (case 9) from Dillmann et al. 

(2010) 

  

promising parameters to evaluate the true objective 

function. 

 The advantage of the Bayesian method is that it 

requires less computational time to validate discovered 

hyperparameters due to the simpler structure of the 

probability model. The surrogate model is continuously 

updated to improve the probability model for selecting 

more appropriate hyperparameters. 

 In this study, due to the large design space, the 

hyperparameters of the neural network are automatically 

obtained using the Bayesian method. The Tree Parzen 

Estimators (Bergstra et al., 2011) and Expected 

Improvement (Jones et al., 1998) methods are used for 

constructing the surrogate model and evaluating 

hyperparameters, respectively. Table 1 presents the 

hyperparameter settings for the current neural network. It 

was found that normalizing the input and output data did 

not improve the training quality for this CFD-based 

dataset. Table 2 shows the optimization settings for Adam, 

where the learning rate can be increased to speed up 

training but may lead to convergence fluctuations, 

especially towards the end of the training process. The 

parameters 𝛽1 and  𝛽2 control the decay rates in the 

moving average calculations in Adam (see (Kingma & Ba, 

2014) for further details). 

 

Table 2 Adam settings for model training 

Learning 

rate 
𝜷𝟏 𝜷𝟐 𝜺 

1 × 𝑒−3 0.9 0.999 1 × 𝑒−8 

 

4.  RESULTS AND DISCUSSIONS 

 The validation of the computational method for the 

RAE2822 airfoil in standard case number 9 has been 

performed, as shown in Fig. 6 and based on Dillmann et 

al., 2010. The flow conditions considered in this study are 

as follows: Mach number of 0.73, angle of attack of 2.79, 

and Reynolds number of 6.5 million. One prominent 

characteristic of transonic flow is the occurrence of shocks 

on the airfoil, and the results demonstrate a favorable 

agreement between the pressure distribution obtained 

from the numerical simulations and the experimental data. 

 In this study, the training process is conducted using 

TensorFlow (Abadi et al., 2016) with Keras (Chollet, 

2015) running on top of Python's TensorFlow library. 

Using CFD-based data provides the advantage of using a 

simple MLP without the need for complex hardware 

during training, unlike image-based methods. 

Additionally, the number of datasets required is 

significantly reduced as the machine directly uses the data 

without the need for feature extraction operations present 

in convolutional methods. The training process in this 

study is performed on a Quad-Core AMD Opteron 

processor with a speed of 2.4 GHz, which is sufficient for 

training using the CFD-based method. 

 Figure 7 illustrates the convergence histories of MLP 

training and validation for all four flow fields. Figure 7(a) 

demonstrates the convergence of the training process for 

pressure after 4000 epochs. On the other hand, Fig 7(b) 

and 7(c) show that only 2500 epochs are needed for 

accurate prediction of velocity components U and V. 

Figure 7(d) indicates that the turbulent kinetic energy 

requires fewer epochs to achieve the minimum error 

compared to the other parameters.  

 The training process terminates at different epochs for 

each flow field due to their distinct nature. However, the 

achieved MSE for all trained networks is on the order of 

O (10−6), indicating a highly accurate training process. 

The best results, indicated by the minimum validation loss, 

are saved during training to ensure that the optimal 

weights and biases are captured. This level of convergence 

error is crucial for accurate contours, especially within the 

boundary layer. 

 It is important to note that increasing the number of 

epochs does not always improve converged results and can 

lead to overfitting, where the machine becomes too 

focused on fitting the training data and fails to generalize 

well to new, unseen data. Determining the appropriate 

number of epochs for a given machine can be done 

through various methods, including trial and error. 
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Fig. 7 Training and validation loss convergence for a) Pressure, b) U-velocity, c) V-velocity and d) turbulent 

kinetic energy 

 

Table 3 Results for random testing cases 

Flow field 
Mach 

number 
AOA 

CFD time 

(s) 

Prediction 

time 

MSE 

(𝟏𝟎−𝟔) 
Speed up 

P 0.36 3.62 698 3.00 0.092 232 

U 0.27 3.5 709 3.00 0.396 260 

V 0.44 2.41 624 3.00 0.612 260 

K 0.45 4.00 745 3.00 0.112 260 

 

 Table 3 presents the prediction results for all flow 

fields using a randomly selected sample from the testing 

cases. In all cases, the computational time for flow field 

prediction is 3 seconds, which is approximately 250 times 

faster than traditional CFD. The total training time for 

each flow field ranges from 6.9 to 12.3 hours. This 

significantly shorter training time is attributed to the 

simplified machine structure and the reduced size of the 

training dataset compared to image-based methods. 

The results indicate that, with the current neural network, 

having a larger number of inputs (beyond the 525 CFD 

flow fields) does not necessarily lead to better training 

outcomes but rather increases the training time. 

Conversely, reducing the number of inputs compromises 

the quality of training and prediction.  

 Figure 8 presents the contour plots of the pressure flow 

field obtained from both CFD and the neural network  

for a randomly selected testing case. The comparison of  
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(c) Regression line                                   (d) Absolute error 

Fig 8 Pressure prediction for random testing case (M=0.36, AOA=3.62) 

 

contour line patterns in Fig. 8(a) and 8(b) confirms the 

accurate prediction of the pressure flow field. Some small 

fluctuations can be observed in the contour lines, 

particularly behind the airfoil.  

 However, the close overlap between the regression 

results in Fig. 8(c) indicates that the prediction was made 

with high accuracy. The regression lines are used to 

validate the predicted and exact solution points. Since the 

predicted values are very close to the CFD results, the 

graph appears as a straight line. 

 Figure 8(d) illustrates the distribution of the absolute 

error between the CFD and prediction across the entire 

computational domain. Due to the rapid flow changes, 

such as the presence of a stagnation point, a small 

difference is observed near the leading edge. However, the 

trained model accurately predicts the values in this region, 

with an error of approximately 0.18% compared to the free 

flow pressure, which is negligible. Figures 9(a) and 9(b) 

demonstrate the close agreement between the predicted 

and CFD values, particularly for the U-velocity, as 

indicated by the convergence results in Fig. 7(b) with a 

minimal error. Figure 9(c) demonstrates a close alignment 

between the CFD and predicted results, indicating a low 

MSE. 

 To assess the performance of the trained machine in 

comparison to the CFD results, the U-velocity profiles at 

three specific points are examined: the leading edge, the 

middle (upper surface), and the wake region. Figure 10 

presents the U-velocity profiles at x=0, 0.5, and 1.2 of the 

chord length. The U profiles obtained from both CFD and 

the prediction for the testing cases exhibit complete 

agreement. 

(a) CFD 

(b) Prediction 
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(c) Regression line                                (d) Absolute error 

Fig. 9 U-velocity prediction for random testing case (M=0.27, AOA=3.5) 

 

 

 (a) x=0                                                         (b) x=0.5                                                     (c) x=1.2 

Fig. 10 U-velocity profile at x=0, 0.5 and 1.2 

 

Despite a slightly higher MSE error in the velocity 

components, the comparison between the CFD and 

predicted results reveals a strong similarity. The predicted 

velocity field exhibits a significantly lower error 

compared to the pressure field near the leading edge.  

 Figure 11 shows the prediction of the V-velocity flow 

field for a random testing case. The presence of accurate 

and smooth contour lines near the boundary layer suggests 

that the neural network performs well in terms of 

generalization. Figures 11(a) and 11(b) illustrate the 

similarity between the CFD and predicted flow fields.  

 In Fig. 12, the V-velocity profiles at x=0.0, 0.5, and 1.2 

of the chord length are presented. At x=0.5, there is a slight 

deviation between the prediction and CFD results. 

However, the maximum error is only around 3%. The 

proposed method exhibits accurate predictions in critical 

regions such as the boundary layer, where the flow 

undergoes rapid changes.  

(a) CFD 

(b) Prediction 
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(c) Regression line                               (d) Absolute error 

Fig. 11 V-velocity prediction for random testing case (M=0.44, AOA=2.41) 

 

 

      (a) x=0                                                        (b) x=0.5                                                     (c) x=1.2 

Fig. 6 V-velocity profile at x=0, 0.5 and 1.2 

 

 The computational grid is refined near these critical 

areas, making it suitable for machine learning. Figure 13 

depicts the distribution of turbulent kinetic energy in the 

flow field. for a random testing case. Significant variations 

in kinetic energy are observed around the airfoil, 

particularly in the wake region. The presence of vortices 

near the trailing edge leads to higher kinetic energy in that 

area. 

 Due to the finer computational grid and the abundance 

of data near the airfoil, the prediction accuracy is 

significantly improved and closely resembles the CFD 

results. 

(a) CFD 

(b) Prediction 
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(c) Regression line                     (d) Absolute error 

Fig. 7 Turbulence kinetic energy prediction for random testing case (M=0.45, AOA=4.00) 

 

 The obtained results demonstrate the benefits of 

utilizing direct CFD information in the machine learning 

process, as it allows for the processing of real data without 

introducing artificial features. In contrast, image-based 

methods often impose artificial characteristics on the 

neural network. Additionally, the Cartesian perspective of 

image-based methods treats all regions of the flow field 

equally, while the direct CFD approach allows for 

adaptive allocation of data based on importance. Another 

advantage of the direct CFD method is the ability to train 

the machine using conventional hardware, eliminating the 

need for powerful GPUs. 

 In future research, our method will be extended to 

predict the flow field for a morphing airfoil with variable 

flow and geometry conditions, particularly focusing on 

landing and takeoff scenarios (Nemati & Jahangirian, 

2020). It is worth noting that morphing geometries 

introduce significant changes to the computational grid 

around the object, which can complicate the training 

process. Therefore, the selection of an appropriate dataset 

that accurately represents the main characteristics of the 

problem becomes increasingly crucial in addressing this 

challenge. 

5. CONCLUSIONS 

 An efficient approach is proposed in this study to 

predict turbulent flow fields by utilizing a data-driven 

method based on direct computational fluid dynamics 

(CFD) inputs. Unlike traditional approaches that rely on 

flow field images, this method trains the machine using 

the values of computational grid cells. This enables a 

higher utilization of data in critical regions, thereby 

enhancing the accuracy of predictions. Conversely, in 

regions where flow variations are negligible, larger cells 

with lower data density are employed, without 

compromising the quality of predictions. 

 Neural network training is then conducted using the 

input data to predict the relevant fields of pressure, 

horizontal and vertical velocities, and turbulent kinetic 

energy. 

 Remarkably, this approach achieves a significant 

reduction of 88% in the amount of data required for 

training, leading to a simplified machine structure and 

lower training computational cost.  

 (a) CFD 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 (b) Prediction 
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 Consequently, it becomes possible to train the machine 

using conventional hardware instead of relying on 

powerful GPU systems.  

 Moreover, the convergence of training and testing loss 

reached an error magnitude on the order of O (10−6) for 

all flow field variables, affirming the reliability of 

predictions. 

 In terms of computational efficiency, the time required 

for flow field prediction was less than 3 seconds, which 

represents a remarkable reduction of 260 times compared 

to the time needed with the CFD solver.  

 It is noted that the present method is applied for 

constant geometry and variable flow conditions, but it has 

the potential to encompass variable geometry and variable 

flow scenarios that is now under development. 
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