Bagheri, M. H., Esmailpour, K., Hoseinalipour, S. M., & Mujumdar, A. S. (2019). Numerical study and POD snapshot analysis of flow characteristics for pulsating turbulent opposing jets.
International Journal of Numerical Methods for Heat & Fluid Flow,
29(6), 2009-2031.
https://doi.org/10.1108/hff-07-2018-0382
Baltzer, J. R., Adrian, R. J., & Wu, X. (2013). Structural organization of large and very large scales in turbulent pipe flow simulation.
Journal of Fluid Mechanics,
720, 236-279.
https://doi.org/10.1017/jfm.2012.642
Bedrouni, M., Khelil, A., Mohamed, B., & Naji, H. (2020). Large eddy simulation of a turbulent flow over circular and mixed staggered tubes' cluster. Journal of
Applied Fluid Mechanics,
13(5), 1471-1486.
https://doi.org/10.36884/jafm.13.05.31119.
Chen, L., Tang, D. B., Liu, X, B., Oliveira, M., & Liu, C. Q. (2009). Evolution of annular vortices and peak structures during boundary layer transition. Chinese Science (G: Physics Mechanics Astronomy), 39(10), 1520-1526. (in Chinese)
Delgadillo, J. A., & Rajamani, R. K. (2005). A comparative study of three turbulence-closure models for the hydrocyclone problem.
International Journal of Mineral Processing,
77(4), 217-230.
https://doi.org/10.1016/j.minpro.2005.06.007
Eriqitai Zou, Z. P., & Wang, Q. (2004). LES of coherent structure in turbulence boundary layer. Journal of Engineering Thermophysics. (in Chinese)
Fukagata, K., Iwamoto, K., & Kasagi, N. (2002). Contribution of reynolds stress distribution to the skin friction in wall-bounded flows.
Physics of Fluids,
14(11), L73-L76.
https://doi.org/10.1063/1.1516779
Ge, M., Xu, C., Huang, W., & Cui, G. (2012). Drag reduction control based on active wall deformation.
Chinese Journal of Theoretical & Applied Mechanics,
44(4), 653-663.
https://doi.org/10.6052/0459-1879-11-198
Jiménez, J., Hoyas, S., Simens, M. P., & Mizuno, Y. (2010). Turbulent boundary layers and channels at moderate reynolds numbers.
Journal of Fluid Mechanics,
657, 335-360.
https://doi.org/10.1017/s0022112010001370
Kim, J. W. (2013). Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters.
Journal of Computational Physics,
241, 168-194.
https://doi:10.1016/j.jcp.2013.01.046.
Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2022). Boundary layer mesh resolution in flow computation with the space–time variational multiscale method and isogeometric discretization.
Mathematical Models and Methods in Applied Sciences. https://doi:10.1142/S0218202522500567.
Lim, E. W. C., Chen, Y. R., Wang, C. H., & Wu, R. M. (2010). Experimental and computational studies of multiphase hydrodynamics in a hydrocyclone separator system.
Chemical Engineering Science,
65(24), 6415-6424.
https://doi.org/10.1016/j.ces.2010.09.029
Liu, Y., & Zhou, L. (2022a). Hydrodynamic modeling of non-swirling and swirling gas-particle two-phase turbulent flow using large eddy simulation.
Process Safety and Environmental Protection,
161, 175-187.
https://doi.org/10.1016/j.psep.2022.03.024
Meng, L., Gao, S., Wei, D., Cui, B., Shen, Y., Song, Z., & Yuan, J. (2020). Effects of cross-sectional geometry on flow characteristics in spiral separators.
Separation Science and Technology,
56(17) 2967-2977.
https://doi.org/10.1080/01496395.2020.1853169
Misiulia, D., Lidén G., & Antonyuk, S. (2021). Evolution of turbulent swirling flow in a small-scale cyclone with increasing flow rate: a les study.
Applied Scientific Research,
107(3), 575-608.
https://doi.org/10.1007/s10494-021-00253-2
Pan, C., Wang, J. J., & Zhang, C. (2009). Identification of Lagrangian coherent structures in the turbulent boundary layer.
Science in China Series G-Physics, Mechanics & Astronomy 39(04), 627-636. (in Chinese)
https://doi.org/10.1007/s11433-009-0033-1
Ram, P., & Kumar, V. (2014). Swirling flow of field dependent viscous ferrofluid over a porous rotating disk with heat transfer.
International Journal of Applied Mechanics,
06(04), 1450033.
https://doi.org/10.1142/s1758825114500331
Saidi, M., Maddahian, R., Farhanieh, B., & Afshin, H. (2012). Modeling of flow field and separation efficiency of a deoiling hydrocyclone using large eddy simulation. International
Journal of Mineral Processing,
112-113(10), 84-93.
https://doi.org/10.1016/j.minpro.2012.06.002
Shi, W. L. (2012). Investigation of large eddy simulation and coherent structure for the flow field of turbine vane. Nanjing: Nanjing university of aeronautics and astronautics. (in Chinese)
Tyagi, M., & Acharya, S. (2003). Large eddy simulation of film cooling flow from an inclined cylindrical jet.
Journal of Turbomachinery,
125(4), 734-742.
https://doi.org/10.1115/gt2003-38633
Wang, P., Wei, X., Shrotriya, P., Li, W., & Ferrante, A. (2022). Investigation of isothermal flow inside a new combustor with two-stage axial swirler.
Journal of Applied Fluid Mechanics,
15(2), 325-336.
https://doi.org/10.47176/jafm.15.02.32653
Xu, C. X. (2015). Coherent structures and drag-reduction mechanism in wall turbulence.
Advances in Mechanics,
45(1), 111-140. https://doi:
10.6052/1000-0992-15-006
Xu, Y., Zhang, Y. Y., Nicolleau, F. C. G. A., & Wang, Z. C. (2018). Piv of swirling flow in a conical pipe with vibrating wall.
International Journal of Applied Mechanics,
10(2), 1850022.
https://doi.org/10.1142/S1758825118500229
Yuan, M., Zhang, W., Liu, G., Zhang, X., Yousif, M. Z., Song, J., & Lim, H. (2022). Performance study of spiral finned tubes on heat transfer and wake flow structure.
International Journal of Heat and Mass Transfer,
196, 123278.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123278
Zhong, W., Yang, J., Zhang, X., Liu Q., & Liu M. (2019). Large eddy simulation of coherent structures of circular-wound flows near wakes. Journal of Engineering Thermophysics, 36(2), 308-312. (in Chinese)