Cui, S., Liu, X., Jiang, S., & Guo, J. (2022). Control strategies for flight stability of trajectory correction projectile with air-ducts structure.
Mathematical Problems in Engineering.
https://doi.org/10.1155/2022/1383294
Ericsson, L. E. (1993). Unsteady flow separation on slender bodies at high angles of attack.
Journal of Spacecraft and Rockets,
30(6): 689-695.
https://doi.org/10.2514/3.26374
Goddard, R. H. (1952). Apparatus for steering aircraft. US.
Hamel, N., & Gagnon, E. (2011
). CFD and Parametric Study on a 155mm Artillery Shell Equipped with a Roll-Decoupled Course Correction Fuze. 29th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2011-3027
Landers, M., & Auman, L. (2001).
Experimental investigation of nose-mounted controls for a hypersonic missile. 19th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2001-2433
Landers, M., Hall, L., Auman, L., & Vaughn, M. (2003).
Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds. 21st AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2003-3805
Liang, K., Huang, Z., & Zhang, J. M. (2017). Optimal design of the aerodynamic parameters for a supersonic two-dimensional guided artillery projectile.
Defence Technology,
13(3), 206-211.
http://dx.doi.org/10.1016/j.dt.2017.05.003
Lin, M., & Sarlak, H. (2016).
A comparative study on the flow over an airfoil using transitional turbulence models. AIP Conference Series. AIP Publishing LLC.
https://doi.org/10.1063/1.4951806
Liu, Y., Li, P. F., He, W., & Jiang, K. Y. (2020). Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines.
Journal of Wind Engineering and Industrial Aerodynamics,
206, 104263.
https://doi.org/10.1016/j.jweia.2020.104263
Liu, Y., Li, P. F., & Jiang, K. Y. (2021). Comparative assessment of transitional turbulence models for airfoil aerodynamics in the low Reynolds number range.
Journal of Wind Engineering and Industrial Aerodynamics,
217, 104726.
https://doi.org/10.1016/j.jweia.2021.104726
Mariotti, A., Buresti, G., Gaggini, G., & Salvetti, M. V. (2017). Separation control and drag reduction for boat-tailed axisymmetric bodies through contoured transverse grooves.
Journal of Fluid Mechanics,
832, 514-549.
https://doi.org/10.1017/jfm.2017.676
Marshall, D. (2005). High speed aerodynamics of novel missile configurations. [MS Thesis, School of Engineering, Cranfield University].
Massey, K., & Flick, A. (2007).
Mechanical and Jet actuators for guiding a small caliber subsonic projectile. 25th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2007-3813
Massey, K., McMichael, J., Warnock, T., & Hay, F. (2008). Mechanical Actuators for Guidance of a Supersonic Projectile.
Journal of Spacecraft and Rockets,
45(4), 802-812.
https://doi.org/10.2514/1.31709
Menter F. R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective.
International Journal of Computational Fluid Dynamics,
23(4), 305-316.
https://doi.org/10.1080/10618560902773387
Peng, M., Hong-Bin, C., Lin-Fang, Q., Ren-Feng, L. I., & Gui-Gao, L. E. (2017). Numerical investigation on the effect of rotating band on aerodynamic characteristics of high-speed spinning projectile.
Acta Armamentarii 38(12), 2363-2372 (in Chinese),
https://doi.org/10.3969/j.issn.1000-1093.2017.12.009
Ren, Y. M., Wang, S. S., Li, J. W., Guo, X. C., & Mei, Y. S. (2019). Aerodynamic and trajectory characteristics of a typical mortar projectile with a deflectable nose.
Defence Technology,
15(5), 758-767.
https://doi.org/10.1016/j.dt.2019.05.019
Robarge, T., Stark, A., Min, S. K., Khalatov, A., & Byerley, A. (2004).
Design considerations for using indented surface treatments to control boundary layer separation. 42nd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2004-425
Roos, F. W. (2001). Microblowing for high-angle-of-attack vortex flow control on a fighter aircraft.
Journal of Aircraft,
38(3), 454-457.
https://doi.org/10.2514/2.2813
Sharma, G., Sharma, G., & Chopra, G. (2015). Computational and experimental study of deflected nose of missile at subsonic speed.
2015 IEEE Aerospace Conference, 1-10.
https://doi.org/10.1109/AERO.2015.7119309
Shi, Y., Hua, Y., & Pan, G. (2020). Experimental study on the trajectory of projectile water entry with asymmetric nose shape.
Physics of Fluids,
32(12), 122119.
https://doi.org/10.1063/5.0033906
Shi, Y., Wang, G. H., & Pan, G. (2019). Experimental study on cavity dynamics of projectile water entry with different physical parameters.
Physics of Fluids,
31(6), 067103.
https://doi.org/10.1063/1.5096588
Stutts, J., & Barrett, R. (1998).
Development and experimental validation of a barrel-launched adaptive munition. 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.1998-2037
Vatsa, V. N., Casalino, D., Lin, J. C., & Appelbaum, J. (2014).
Numerical simulation of a high-lift configuration with embedded fluidic actuators. 32nd AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2014-2142
Vaughn, M., & Auman, L. (2002).
A productivity-oriented application of computational fluid dynamics to the design of a hypervelocity missile. 20th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2002-2937
Vaughn, M., & Auman, L. (2003).
Assessment of a productivity-oriented cfd methodology for designing a hypervelocity missile. 21st AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2003-3937
Wang, X., Shi, Y., Pan, G., Chen, X., & Zhao, H. (2021). Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes.
Ocean Engineering,
234, 109274.
https://doi.org/10.1016/j.oceaneng.2021.109274
Wang, Y., Song, W. D., Fang, D. & Guo, Q. W. (2015). Guidance and control design for a class of spin-stabilized projectiles with a two-dimensional trajectory correction fuze.
International Journal of Aerospace Engineering,
2015, 1-15.
https://doi.org/10.1155/2015/908304
Wauters, J., & Degroote, J. (2018). On the study of transitional low-Reynolds number flows over airfoils operating at high angles of attack and their prediction using transitional turbulence models.
Progress in Aerospace Sciences 103, 52–68.
https://doi.org/10.1016/j.paerosci.2018.10.004
Wu, Z. R., Li, M., Wang, S. L., Yang, H. Y., & Liang, X. J. (2019). Numerical research on the turbulent drag reduction mechanism of a transverse groove structure on an airfoil blade.
Engineering Applications of Computational Fluid Mechanics,
13(1), 1024-1035.
https://doi.org/10.1080/19942060.2019.1665101
Xu, Z. Q., Liu, X. M. Liu, Y., Qin, W. X., & Xi, G. (2022). Flow control mechanism of blade tip bionic grooves and their influence on aerodynamic performance and noise of multi-blade centrifugal fan.
Energies,
15(9), 3431.
https://doi.org/10.3390/en15093431
Zhang, B., Wang, S. S., Cao, M. Y., & Xu Y. X. (2014). Impacts of deflection nose on ballistic trajectory control law.
Mathematical Problems in Engineering,
2014, 1-6.
https://doi.org/10.1155/2014/984840
Zhang, B., Wang, S. S., Cao, M. Y., & Xu Y. X. (2015). Simulation and analysis on aerodynamic characteristics of deflectable nose.
Progress in Computational Fluid Dynamics, an International Journal,
15(5), 279.
https://doi.org/10.1504/PCFD.2015.072012