Binama, M., Su, W. T., Li, X. B., Li, F. C., Wei, X. Z., & An, S. (2017). Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review.
Renewable and Sustainable Energy Reviews,
79, 148-179.
http://dx.doi.org/10.1016/j.rser.2013.11.030
Barrio, R., Fernández, J., Parrondo, J., & Blanco, E. (2010).
Performance prediction of a centrifugal pump working in direct and reverse mode using computational fluid dynamics. International conference on renewable energies and power quality, Granada, Spain.
https://doi.org/10.1016/j.renene.2017.02.045
Blomquist, C. A., Frigo, A. A., & Degnan, J. R. (1979).
Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump/turbines for operating heads of 1000 to 1500 m. Argonne National Lab., United States, USA.
https://doi.org/10.2172/6716879
Duan. L., Wu. X., Ji. Z., & Fang. Q. (2015). Entropy generation analysis on cyclone separators with different exit pipe diameters and inlet dimensions.
Chemical Engineering Science,
138, 622-633.
https://doi.org/10.1016/j.ces.2015.09.003
Derakhshan, S., & Nourbakhsh, A. (2008a). Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds.
Experimental Thermal and Fluid Science,
32, 800-7.
https://doi.org/10.1016/j.expthermflusci.2007.10.004
Fernandez, J., Blanco, E., Parrondo, J., Stickland, M. T., & Scanlon, T. J. (2004). Performance of a centrifugal pump running in inverse mode.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
218, 265-71.
https://doi.org/10.1243/0957650041200632
Ghorani, M. M., Haghighi, M. H. S., Maleki, A., & Riasi, A. (2020). A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory.
Renewable Energy,
162, 1036-1053.
https://doi.org/10.1016/j.renene.2020.08.102
Gong, R. Z., Qi, N. M., Wang, H. J., Chen, A. L., & Qin, D. Q. (2017). Entropy production analysis for S-characteristics of a pump turbine.
Journal of Applied Fluid Mechanics,
10, 1657-1668. https://doi.org/
10.18869/acadpub.jafm.73.243.27675
Günther, T., Schulze, M., & Theisel, H. (2016). Rotation invariant vortices for flow visualization.
IEEE Transactions on Visualization and Computer Graphics,
22, 817-826.
https://doi.org/10.1109/TVCG.2015.2467200
Gong, R., Wang, H., Chen, L., Li, D., Zhang, H., & Wei, X. (2013). Application of entropy production theory to hydro-turbine hydraulic analysis.
Science China Technological Sciences,
56, 1636-1643.
https://doi.org/10.1007/s11431-013-5229-y
Huang, S., Qiu, G., Su, X., Chen, J., & Zou, W. (2017). Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle.
Renewable Energy,
108, 64-71.
https://doi.org/10.1016/j.renene.2017.02.045
Hou, H., Zhang, Y., Li, Z., Jiang, T., Zhang, J., & Xu, C. (2016). Numerical analysis of entropy production on a LNG cryogenic submerged pump.
Journal of Natural Gas Science and Engineering,
36, 87-96.
https://doi.org/10.1016/j.jngse.2016.10.017
Herwig, H., & Kock, F. (2007). Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems.
Heat and mass transfer,
43(3), 207-215.
https://doi.org/10.1007/s00231-006-0086-x
International Electrotechnical Commission (1999). IEC60193-1999, Hydraulic turbines, storage pumps and pump turbines-model acceptance tests. Geneva, Switzerland.
Jain, S. V., & Patel, R. N. (2014). Investigations on pump running in turbine mode: A review of the state-of-the-art.
Renewable and Sustainable Energy Reviews,
30, 841-868.
https://doi.org/10.1016/j.rser.2013.11.030
Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions.
International Journal of Heat and Mass Transfer,
47, 2205-2215
. https://doi.org/10.1007/s11630-006-0159-7
Li, X. J., Ouyang, T., Lin, Y. P., & Zhu, Z. (2023). Interstage difference and deterministic decomposition of internal unsteady flow in a five-stage centrifugal pump as turbine.
Physics of Fluids, 35, 045136.
https://doi.org/10.1063/5.0150300
Li, X. J., Jiang, Z. W., Zhu, Z. C., Si, Q., & Li, Y. (2018). Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump.
Journal of Mechanical Engineering Science,
232(24), 4637-4646.
https://doi.org/10.1177/0954406217753458
Lin, T., Li, X., Zhu, Z., Xie, J., Li, Y., & Yang, H. (2021). Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine.
Renewable Energy,
163, 41-55.
https://doi.org/10.1016/j.renene.2020.08.109
Lee, J., Moshfeghi, M., Hur, N., & Yoon, I. S. (2016). Flow analysis in a return channel of a multi-stage centrifugal pump.
Journal of Mechanical Science and Technology,
30(9), 3993-4000.
https://doi.org/10.1007/s12206-016-0811-4
Li, D., Gong, R., Wang, H., Xiang, G., Wei, X., & Qin, D. (2016). Entropy production analysis for hump characteristics of a pump turbine model.
Chinese Journal of Mechanical Engineering,
29, 803-812.
https://doi.org/10.3901/CJME.2016.0414.052
Maleki, A., Ghorani, M. M., Haghighi, M. H. S., & Riasi, A. (2020). Numerical study on the effect of viscosity on a multistage pump running in reverse mode.
Renewable Energy,
150, 234-254.
https://doi.org/10.1016/j.renene.2019.12.113
Nautiyal, H., Varun, V., Kumar, A., Yadav, S. Y. S, (2011). Experimental investigation of centrifugal pump working as turbine for small hydropower systems.
Energy Science and Technology,
1, 79-86.
https://doi.org/10.3968/j.est.1923847920110101.006
Nautiyal, H., & Kumar, V. A. (2010). Reverse running pumps analytical, experimental and computational study: a review.
Renewable and Sustainable Energy Reviews,
14, 2059-67.
https://doi.org/10.1016/j.rser.2010.04.006
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA journal,
32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Pugliese, F., Fontana, N., Marini, G., & Giugni, M. (2021). Experimental assessment of the impact of number of stages on vertical axis multi-stage centrifugal PATs.
Renewable Energy,
178, 891-903.
https://doi.org/10.1016/j.renene.2021.06.132
Pei, J., Meng, F., Li, Y., Yuan, S., & Chen, J. (2016). Effects of distance between impeller and guide vane on losses in a low head pump by entropy production analysis.
Advances in Mechanical Engineering,
8, 1-11.
https://doi.org/10.1177/1687814016679568
Qian, B., Chen, J. P., Wu, P., Wu, D. Z., Yan, P., & Li, S. Y. (2019).
Investigation on inner flow quality assessment of centrifugal pump based on Euler head and entropy production analysis. IOP IOP Conference Series: Earth and Environmental Science,
240, 92001.
https://doi.org/10.1115/1.4047231
Sanghirun, W., & Asvapoositkul, W. (2023). Energy losses assessment of smallholder farmers’ surface water irrigation pumps in south and southeast asia using entropy generation principle.
Journal of applied fluid mechanics,
16, 2023-2040.
https://doi.org/10.47176/jafm.16.10.1851
Shehata, A. S., Saqr, K., Xiao, Q., Shehadeh, M. F., & Day, A. (2016). Performance analysis of wells turbine blades using the entropy generation minimization method.
Renewable Energy,
86, 1123-1133.
https://doi.org/10.1016/j.renene.2015.09.045
Tao, R., & Wang, Z. (2021). Comparative numerical studies for the flow energy dissipation features in a pump-turbine in pump mode and turbine mode.
Journal of Energy Storage,
41, 102835.
https://doi.org/10.1016/j.est.2021.102835
Wang, T., Wang, C., Kong, F., Gou, Q., & Yang, S. (2017). Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine.
Energy, 130, 473-485.
https://doi.org/10.1016/j.energy.2017.04.156
Williams, A. (1994). The turbine performance of centrifugal pumps: a comparison of prediction methods.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
208, 59-66.
https://doi.org/10.1243/PIME_PROC_1994_208_009_02
Xia, L., Cheng, Y., You, J., Zhang, X., Yang, J., & Qian, Z. (2017). Mechanism of the S-shaped characteristics and the runaway Instability of Pump-Turbines.
Journal of Fluids Engineering,
139(3), 031101.
https://doi.org/10.1115/1.4035026
Yu, A., Li, L., Ji, J., & Tang, Q. (2022). Numerical study on the energy evaluation characteristics in a pump turbine based on the thermodynamic entropy theory.
Renewable Energy,
195, 766-779.
https://doi.org/10.1016/j.renene.2022.06.077
Yang, Y., Zhou, L., Shi, W., He, Z., Han, Y., & Xiao, Y. (2021). Interstage difference of pressure pulsation in a three-stage electrical submersible pump.
Journal of Petroleum Science and Engineering,
196, 107653.
https://doi.org/10.1016/j.petrol.2020.107653
Zhu, B., Han, W., Tai, Z., & Chen, Y. (2023). Flow evolution and energy loss mechanism in accidental shutdown process of a large submersible mixed-flow pump system.
Journal of Applied Fluid Mechanics,
16, 947-959.
https://doi.org/10.47176/jafm.16.05.1550