Abdulkareem, O. A., Khudheyer, A. F., & Abbas, A. S. (2021). Numerical
Investigation of the effect of changing the thickness of airfoils used in wind turbines on the lift to drag ratio. IOP Conference Series: Materials Science and Engineering,
1094(1), 012078.
https://doi.org/10.1088/1757-899X/1094/1/012078
Abjadi, A., Ghafoorian, F., & Chegini, S. (2022). Effect of nozzle installation on the aerodynamic performance of a savonius vertical axis wind turbine, using CFD method. Journal of Mechanical Research and Application, 11(4), 87–70.
Akhlaghi, M., & Ghafoorian, F. (2022). The investigation of arc angle rotor blade variations effect of the Savonius vertical axis wind turbine on the Power and Torque coefficients, using 3D modeling.
Renewable Energy Research and Applications.
https://doi.org/10.22044/rera.2022.11282.1084
Akhlagi, M., Ghafoorian, F., Mehrpooya, M., & Sharifi Rizi, M. (2022).
Effective parameters optimization of a small scale gorlov wind turbine, using cfd method. In Iranian Journal of Chemistry and Chemical Engineering. Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR.
https://doi.org/10.30492/IJCCE.2022.561960.5584
Asadbeigi, M., Ghafoorian, F., Mehrpooya, M., Chegini, S., & Jarrahian, A. (2023). A 3D study of the darrieus wind turbine with auxiliary blades and economic analysis based on an optimal design from a parametric investigation.
Sustainability,
15(5), 4684.
https://doi.org/10.3390/su15054684
Asadi, M., & Hassanzadeh, R. (2021). Effects of internal rotor parameters on the performance of a two bladed Darrieus-two bladed Savonius hybrid wind turbine.
Energy Conversion and Management,
238, 114109.
https://doi.org/10.1016/j.enconman.2021.114109
Balduzzi, F., Bianchini, A., Ferrara, G., & Ferrari, L. (2016). Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines.
Energy,
97, 246–261.
https://doi.org/10.1016/j.energy.2015.12.111
Bel Mabrouk, I., & El Hami, A. (2019). Effect of number of blades on the dynamic behavior of a Darrieus turbine geared transmission system.
Mechanical Systems and Signal Processing,
12
1, 562–578.
https://doi.org/10.1016/j.ymssp.2018.11.048
Berkache, A., Boumehani, A., Noura, B., & Kerfah, R. (2022). Numerical investigation of 3D unsteady flow around a rotor of vertical axis wind turbine darrieus type H.
Journal of Thermal Engineering,
8(6), 691–701.
https://doi.org/10.18186/thermal.1193932
Cai, X., Zhang, Y., Ding, W., & Bian, S. (2019). The aerodynamic performance of H-type darrieus VAWT rotor with and without winglets: CFD simulations.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–12.
https://doi.org/10.1080/15567036.2019.1691286
Chegini, S., Ghafoorian, F., Moghimi, M., & Mehrpooya, M. (2023).
Optimized arrangement of clustered Savonius VAWTs, Techno-Economic evaluation and feasibility of installation. In Iranian Journal of Chemistry and Chemical Engineering. Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR.
https://doi.org/10.30492/IJCCE.2023.2004246.6066
Danao, L. A., Eboibi, O., & Howell, R. (2013). An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine.
Applied Energy,
107, 403–411.
https://doi.org/10.1016/j.apenergy.2013.02.012
Daróczy, L., Janiga, G., Petrasch, K., Webner, M., & Thévenin, D. (2015). Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors.
Energy,
90, 680–690.
https://doi.org/10.1016/j.energy.2015.07.102
Dessoky, A., Bangga, G., Lutz, T., & Krämer, E. (2019). Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology.
Energy,
175, 76–97.
https://doi.org/10.1016/j.energy.2019.03.066
Dixon, S. L., & Hall, C. A. (2014). Fluid mechanics and thermodynamics of turbomachinery (Seventh edition). Butterworth-Heinemann is an imprint of Elsevier.
Du, L., Ingram, G., & Dominy, R. G. (2019). A review of H-Darrieus wind turbine aerodynamic research.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
233(23–24), 7590–7616.
https://doi.org/10.1177/0954406219885962
Farajyar, S., Ghafoorian, F., Mehrpooya, M., & Asadbeigi, M. (2023). CFD investigation and optimization on the aerodynamic performance of a savonius vertical axis wind turbine and its installation in a hybrid power supply system: a case study in iran.
Sustainability,
15(6), 5318.
https://doi.org/10.3390/su15065318
Ghiasi, P., Najafi, G., Ghobadian, B., Jafari, A., & Mazlan, M. (2022). Analytical study of the impact of solidity, chord length, number of blades, aspect ratio and airfoil type on h-rotor darrieus wind turbine performance at low reynolds number.
Sustainability,
14(5), 2623.
https://doi.org/10.3390/su14052623
Hand, B., Kelly, G., & Cashman, A. (2021). Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review.
Renewable and Sustainable Energy Reviews,
139, 110699.
https://doi.org/10.1016/j.rser.2020.110699
Ibrahim, K. A., El-Askary, W. A., Ghonim, T. A., & Nebiewa, A. M. (2020). An experimental investigation of a darrieus straight-bladed wind turbine.
ERJ. Engineering Research Journal,
43(1), 1–9.
https://doi.org/10.21608/erjm.2020.72098
Lositaño, I. C. M., & Danao, L. A. M. (2019). Steady wind performance of a 5 kW three-bladed H-rotor Darrieus Vertical Axis Wind Turbine (VAWT) with cambered tubercle leading edge (TLE) blades.
Energy,
175, 278–291.
https://doi.org/10.1016/j.energy.2019.03.033
Mehrpooya, M., Asadbeigi, M., Ghafoorian, F., & Farajyar, S. (2023).
Investigation and optimization on effective parameters of a h-rotor darrieus wind turbine, using CFD method. In Iranian Journal of Chemistry and Chemical Engineering. Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR.
https://doi.org/10.30492/IJCCE.2023.562396.5610
Moghimi, M., & Motawej, H. (2020). Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines.
Sustainable Energy Technologies and Assessments,
37, 100616.
https://doi.org/10.1016/j.seta.2019.100616
Nichols, R. H. (2010). Turbulence models and their application to complex flows. University of Alabama at Birmingham, Revision, 4, 89.
Pan, L., Zhu, Z., Xiao, H., & Wang, L. (2021). Numerical analysis and parameter optimization of j-shaped blade on offshore vertical axis wind turbine.
Energies,
14(19), 6426.
https://doi.org/10.3390/en14196426
Rezaeiha, A., Kalkman, I., & Blocken, B. (2017). CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment.
Renewable Energy,
107, 373–385.
https://doi.org/10.1016/j.renene.2017.02.006
Saad, M. M. M., & Asmuin, N. (2014). Comparison of horizontal axis wind turbines and vertical axis wind turbines. IOSR Journal of Engineering (IOSRJEN), 4(08), 2730.
https://doi.org/10.9790/3021-04822730
Siddiqui, M. S., Rasheed, A., Kvamsdal, T., & Tabib, M. (2015). Effect of Turbulence Intensity on the Performance of an Offshore Vertical Axis Wind Turbine.
Energy Procedia,
80, 312320.
https://doi.org/10.1016/j.egypro.2015.11.435
Subramanian, A., Yogesh, S. A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., & Velamati, R. K. (2017). Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model.
Energy,
133, 179–190.
https://doi.org/10.1016/j.energy.2017.05.118
Tunio, I. A., Shah, M. A., Hussain, T., Harijan, K., Mirjat, N. H., & Memon, A. H. (2020). Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine.
Renewable Energy,
153, 143–154.
https://doi.org/10.1016/j.renene.2020.02.012