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ABSTRACT 

The study proposes a new method called MTRMC to simulate flow in rarefied 

regimes, which are important in various industrial and engineering applications. 

This new method utilizes a modified collision function with smaller number of 

inter-molecular collisions, making it more computationally efficient than the 

widely used direct simulation Monte Carlo (DSMC) method. The MTRMC 

method is used to analyze the flow over a flat nano-plate at various free stream 

velocities, ranging from low to supersonic speeds. The results are compared with 

those from DSMC and time relaxed Monte Carlo (TRMC) schemes, and the 

findings show that the MTRMC method is in good agreement with the standard 

schemes, with a significant reduction in computational expense, up to 51% in 

some cases. 
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1. INTRODUCTION 

Studies show that in rarefied flows or micro- and 

nano-scale geometries, in which the characteristic length 

of a flow is similar in size to the mean free path, the 

Navier-Stokes equations cannot be applied for accurately 

simulating the flow. In these cases, the NS equations lose 

their validity and the Boltzmann equation should be solved 

as the governing equation (Cercignani & Cercignani, 

1988; Bird, 1994). Since the development of the direct 

simulation Monte Carlo (DSMC) method, this method has 

been widely employed for numerically solving the 

Boltzmann equation in a wide variety of problems and 

geometries (Cercignani & Cercignani, 1988; Bird, 1994; 

Pareschi & Trazzi, 2005). Although the DSMC scheme is 

relatively straightforward and accurate, its significant 

computational cost is not justifiable. This issue is 

especially more pronounced in low-Knudsen flows. 

Therefore, it is of significant importance to develop 

modified approach to alleviate the CPU time of solving the 

governing equations (Gabetta et al., 1997; Oran et al., 

1998; Pan et al., 2000; Filbet & Russo, 2003; Pareschi & 

Trazzi, 2005).  

Aiming at resolving this shortcoming, a new and 

efficient numerical method called the time-relaxed Monte 

Carlo (TRMC) method was developed, which can be used 

for a wide range of Knudsen numbers. In this method, the 

Wild sum expansion (Wild, 1951) is used to incorporate 

time discretization, and a local Maxwellian distribution is 

applied to particles rather than performing complex 

calculations to simulate high-order collisions (Pareschi & 

Caflisch, 1999). Consequently, this method has a simple 

and effective algorithm. Pareschi & Russo (2000) 

analyzed the stability of the TRMC approach and 

demonstrated its A-stability and L-stability in numerous 

case studies. They also applied the TRMC scheme to 

perform numerical simulations and obtain a reasonable 

solution for the Kac equation, and achieved promising 

results when compared with the DSMC method. The 

TRMC scheme has been subject to stability analysis by 

Pareschi and Russo, and their findings in numerous case 

studies demonstrated that the scheme is both A-stable and 

L-stable. Additionally, Pareschi & Russo (2001a, 2001b) 

and; Pareschi and Wennberg 2001) modified the TRMC 

algorithm for variable hard sphere (VHS) particles, 

investigated the 1D shock wave problem, and achieved 

promising data. Pareschi and Trazzi (2005) developed 

higher orders of the TRMC approach to simulate gas flow 

around an obstacle and demonstrated significantly lower 

computational expenses when compared to the DSMC 

method. Aiming at improving the simulation accuracy, 

Russo et al. (2005) performed similar modifications and 

developed the TRMC3 scheme, where 3 implies third-
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order collisions. In this regard, they studied Couette flow 

at various rarefaction degrees and wall velocities as the 

benchmark case study. The comparison of hydrodynamic 

parameters obtained from the different schemes 

demonstrated that the results from the TRMC method 

conform to those from the DSMC approach. Ganjaei and 

Nourazar (2009) conducted a study on the flow of a binary 

mixture of Argon and Helium in a rotating cylinder. Since 

the operating gas was a mixture of two gases, Dalton's law 

was applied to determine the partial pressures of species. 

It was found that the predictions using the TRMC method 

conform to the analytical solution. It was revealed that the 

TRMC scheme can be used to perform accurate 

simulations in complex geometries. Trazzi et al. (2009) 

proposed a recursive TRMC algorithm to achieve uniform 

time accuracy, which is not affected by the time step. 

Through the proposed algorithm, CPU time of simulating 

both homogeneous and non-homogeneous problems were 

reduced remarkably when compared to that of the DSMC 

scheme. Dimarco and Pareschi (2011) proposed a class of 

exponential Runge-Kutta integration methods for kinetic 

equations, specifically addressing the challenges 

associated with solving nonlinear equations in stiff 

regimes. These methods offer exact treatment of 

relaxation operators, avoidance of nonlinear systems, 

stability, negativity, and entropy inequality. In addition to 

being suitable for deterministic techniques, the developed 

methods are also applicable to probabilistic numerical 

approaches. They also examined the applicability, 

advantages, and limitations of the developed methods. 

Eskandari and Nourazar (2017; 2018a) utilized various 

orders of the TRMC approach to investigate the behavior 

of microcavity flow under different conditions such as 

varying lid velocities and rarefaction degrees. Meanwhile, 

they also applied the TRMC scheme to analyze a nano-

plate subjected to various free stream velocities and 

rarefaction degrees. Based on the performed simulations, 

it was demonstrated that the TRMC scheme can accurately 

predict the behavior of rarefied gas flows for a wide range 

of Knudsen numbers and geometries, with reduced 

computational cost compared to the DSMC method. To 

decrease computational costs, a modified version of the 

TRMC scheme (MTRMC) was suggested by Eskandari 

and Nourazar (2018 a, b). The MTRMC was then utilized 

to study the flow within a lid-driven micro-cavity, and a 

reduction in computational time of up to 51% was 

achieved. Baliti et al. (2019) investigated the heat transfer 

of rarefied gas confined within a square cavity using 

DSMC and Navier-Stokes-Fourier (NSF) methods. 

Plimpton et al. (2019) developed the open-source 

SPARTA DSMC code and simulated numerous 

benchmark problems. Mukherjee et al. (2019) studied the 

influence of affecting parameters such as Knudsen 

number, lid velocity, and velocity ratio on the flow pattern 

of a lid-driven cavity. Koc et al. (2021) applied event-

driven molecular dynamics (EDMD) simulation to 

analyze the properties of mono-atomic gas flow through 

the porous medium in the transition regime. Molecules 

were considered hard sphere particles suspended in the 

porous medium. Based on the performed simulation, the 

effects of porosity, diameter of spheres, and Knudsen on 

mass flow rate, dynamic viscosity, tortuosity, and 

permeability were analyzed. Taheri et al. (2022) 

introduced the Symmetrized and Simplified Bernoulli 

Trials (SSBT) approach, which allows for greater 

flexibility in selecting pairs under less stringent 

conditions. Kalinov et al. (2022) utilized the DSMC 

method to simulate the kinetics of aggregation and made 

modifications to account for aggregation processes 

involving collisional fragmentation. 

According to the reviewed investigations, a modified 

numerical approach called the MTRMC approach is 

proposed in this article to alleviate the CPU time of 

solving the Boltzmann equation. To this end, Taylor series 

expansion is applied to derivatives terms to obtain 

modified collision functions. The accuracy and 

computational efficiency of the MTRMC method are 

evaluated by considering a gas flow over a flat nano-plate 

as a benchmark problem. The study focuses on the 

following aspects of the flow:  

1. Evaluating the accuracy of the MTRMC method 

using a test problem. 

2. Comparing the required CPU times for different 

methods. 

3. Analyzing the impact of free stream velocity on 

the flow pattern. 

2. GOVERNING EQUATIONS 

2.1 The Boltzmann Equation 

The governing equation for time evolution of particles 

can be expressed in the form of the Boltzmann equation: 

𝜕𝑓

𝜕𝑡
+ 𝜐. ∇𝑥=

1

𝐾𝑛
𝑄(𝑓, 𝑓).

 
(1) 

where 𝑓(𝒗, 𝒓, 𝑡) is the one-particle distribution function, 

which gives the probability density of finding a particle 

with velocity 𝒗 at position 𝒓 and time 𝑡; 𝑄(𝑓, 𝑓) denotes 

the collision operator accounting for the interactions 

between particles. Assuming 𝑄(𝑓, 𝑓) =  𝑃(𝑓, 𝑓) − 𝜇𝑓, 

Eq. 1 can be rewritten as follows (Wild, 1951; Gabetta et 

al., 1997; Carlen et al., 2000): 

𝜕𝑓

𝜕𝑡
+ 𝜐. ∇𝑥=

1

𝐾𝑛
(𝑃(𝑓, 𝑓) − 𝜇𝑓).

 
(2) 

The function 𝑃(𝑓, 𝑓) is a bilinear operator that 

exhibits symmetry and represents the interaction of 

molecules during collisions. The term 𝜇 ≠ 0 is the average 

collision frequency. Typically, the Boltzmann equation (2) 

is separated into two parts, including terms for pure 

convection (3) where 𝑄 is equal to zero, and the collision 

terms (4) where 𝜐. ∇𝑥 is zero (Bird, 1994; Pareschi & 

Caflisch, 1999; Pareschi & Wennberg, 2001; Pareschi & 

Trazzi, 2005; Jahangiri et al., 2012). This can be 

mathematically expressed in the form below: 

𝜕𝑓

𝜕𝑡
+ 𝜐. ∇𝑥= 0.

 
(3) 

𝜕𝑓

𝜕𝑡
=

1

𝐾𝑛
(𝑃(𝑓, 𝑓) − 𝜇𝑓).

 
(4) 

Equation (3) can be solved straightforwardly, which 

simplifies the problem to only focus on the collision part. 
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2.2 DSMC Method 

This method involves using the Euler upwind scheme 

to solve equation (4) and simulate collision between 

particles. This scheme simplifies the problem by allowing 

us to focus solely on the collision step equation (4) 

(Pareschi & Trazzi, 2005): 

𝑓𝑛+1−𝑓𝑛

∆𝑡
=

𝜇

𝐾𝑛
(

𝑃(𝑓,𝑓)−𝜇𝑓

𝜇
) −

𝜇

𝐾𝑛
𝑓.

 
(5) 

𝑓𝑛+1 = (1 −
𝜇∆𝑡

𝐾𝑛
) 𝑓𝑛 +

𝜇∆𝑡

𝐾𝑛

𝑃(𝑓,𝑓)

𝜇
.
 

(6) 

The DSMC method employs a probabilistic 

interpretation, which involves randomly sampling a 

particle from either 𝑓𝑛 or 
𝑃(𝑓,𝑓)

𝜇
 to obtain 𝑓𝑛+1, as given 

by equation (6). The former is selected with a probability 

of (1 −
𝜇∆𝑡

𝐾𝑛
), whereas the latter is chosen with a 

probability of 
𝜇∆𝑡

𝐾𝑛
. It should be noted that the collision 

probability is non-negative, which requires 
𝜇∆𝑡

𝐾𝑛
 to be less 

than or equal to 1. 

2.3 TRMC Method 

The relaxed time 𝜏 and the transformed probability 

distribution function 𝐹(𝜐, 𝜏) is given by the following 

expressions, as reported in (Pareschi & Caflisch, 1999; 

Pareschi & Trazzi, 2005): 

𝜏 = (1 − 𝑒−𝜇𝑡 Kn⁄ ).
 

(7) 

𝐹(𝜐, 𝜏) = 𝑓(𝜐, 𝜏)𝑒−𝜇𝑡 Kn⁄ .
 

(8) 

Accordingly, equation (4) transforms into the 

following expressions: 

𝜕𝐹

𝜕𝜏
=

1

𝜇
𝑃(𝑓, 𝑓).

 
 

𝐹(𝜐, 𝜏 = 0) = 𝑓(𝜐, 0).
 

(9) 

A power series solution exists for the Cauchy problem 

given by equation (9): 

𝐹(𝜐, 𝜏) = ∑ 𝑡𝑘𝑓𝑘(𝑣)∞
𝑘=0 .

 
 

𝑓(𝜐, 𝜏) = 𝑒−𝜇𝑡 Kn⁄ ∑ ((1 − 𝑒−𝜇𝑡 Kn⁄ )𝑓𝑘(𝑣))∞
𝑘=0 .

 
(10) 

By using equation (10), equation (9) can be 

rearranged as follows: 

𝜕𝐹

𝜕𝜏
= ∑ 𝑘𝑡𝑘−1𝑓𝑘(𝑣)

∞

𝑘=0

= ∑(𝑘 + 1)𝑡𝑘𝑓𝑘+1(𝑣)

∞

𝑘=0
 

(11) 

𝑃(𝐹, 𝐹) = 𝑃(∑ 𝑡𝑘𝑓𝑘(𝑣)∞
𝑘=0 , ∑ 𝑡𝑘𝑓𝑘(𝑣)∞

𝑘=0 ) =

𝑃(𝑓0, 𝑓0) + 2𝜏𝑃(𝑓0, 𝑓1) + 𝜏2(2𝑃(𝑓0, 𝑓2) +

𝑃(𝑓1, 𝑓1)) + ⋯ 
 

(12) 

The term 𝑓𝑘 can be calculated using a recursive 

algorithm by equating corresponding powers of 𝜏: 

𝑓𝑘+1 =
1

𝑘+1
∑ (

1

𝜇
𝑃(𝑓𝑘, 𝑓𝑘−ℎ))𝑘

ℎ=0 .
 

(13) 

The TRMC approach can be derived by utilizing the 

Maxwellian truncation, as shown below: 

𝑓𝑛+1(𝑣) = 𝑒−
𝜇∆𝑡

𝐾𝑛 ∑ 𝜏𝑘𝑓𝑘(𝑣)𝑚
𝑘=0 + (1 −

𝑒−
𝜇∆𝑡

𝐾𝑛 )
𝑚+1

𝑀(𝑣).
 

(14) 

It is worth noting that the above formulations allow 

for the use of different weight functions. Therefore, the 

TRMC method in the most general form is as follows 

(Pareschi & Caflisch, 1999; Pareschi & Russo, 2000, 

2001a, b; Pareschi & Trazzi, 2005; Trazzi et al., 2009): 

𝑓𝑛+1(𝑣) = ∑ (𝐴𝑘𝑓𝑘(𝑣))𝑚
𝑘=0 + 𝐴𝑚+1𝑀(𝑣).

 
(15) 

The coefficients 𝑓𝑘 can be determined using equation 

(13). In this work, the weight functions are chosen 

following the approach proposed by Pareschi & Russo 

(2000), and Pareschi & Trazzi 2005). 

𝐴𝑘 = (1 − 𝜏)𝜏𝑘.
 

 

𝐴𝑚 = 1 − ∑ 𝐴𝑘
𝑚
𝑘=0 − 𝐴𝑚+1.

 
 

𝐴𝑚+1 = 𝜏𝑚+2. (16) 

This article utilizes positive weight functions are 

employed, which are designed to satisfy consistency, 

conservation, and asymptotic preservation requirements 

concurrently. These conditions are expressed in equations 

(17), (18), and (19), respectively. 

lim
𝜏→0

𝐴1(𝜏)

𝜏
= 1.

 
 

lim
𝜏→0

𝐴𝑘(𝜏)

𝜏
= 0, ∀𝑘 = 2, ⋯ , 𝑚 + 1.

 
(17) 

∑ 𝐴𝑘(𝜏)𝑚+1
𝑘=0 = 1. (18) 

lim
𝜏→1

𝐴𝑘(𝜏) = 0, ∀𝑘 = 0, ⋯ , 𝑚  

lim
𝜏→1

 𝐴𝑚+1(𝜏) = 1. (19) 

It should be indicated that using lower orders of the 

TRMC method for large time steps may result in 

inaccurate results, while the higher orders of the method 

are computationally complex. To address this issue, the 

present study employs the third-order TRMC (TRMC3) 

method. 

By setting 𝑚 = 3 in equation (15) and using the 

weight functions given by equation (16), the third-order 

TRMC scheme can be obtained. 

𝑓𝑛+1 = (1 − 𝜏)𝑓0 + (𝜏 − 𝜏2)
𝑃(𝑓0,𝑓0)

𝜇
+ (𝜏2 −

𝜏3)
𝑃(𝑓0,𝑓1)

𝜇
+ (𝜏3 − 𝜏5)

2𝑃(𝑓0,𝑓2)+𝑃(𝑓1,𝑓1)

3𝜇
+

 𝜏5𝑀(𝑣) = 𝐴0𝑓𝑛 + 𝐴1𝑓1 + 𝐴2𝑓2 + 𝐴3𝑓3 +
𝐴4𝑀(𝑣). 

(20) 

Equation (20) can be described as follows: 

At the 𝑛𝑡ℎ time step, a particle can undergo one of 

several events according to Equation (20): 

1. It may not collide with any other particle with a 

probability of 𝐴0. 

2. It may collide with a particle from the same 

population that has not undergone any collision 

yet, sampled from 𝑓𝑛, with a probability of 𝐴1. 
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3. It may collide with a particle that has undergone 

one collision, sampled from 𝑓1, with a probability 

of 𝐴2. 

4. It may undergo two collisions in the following 

way: first collide with another particle from the 

distribution 𝑓𝑛, followed by a subsequent 

collision with a particle from the distribution 𝑓1 

with a probability of 
1

3
𝐴3. Alternatively, it may 

collide with a particle that has undergone two 

collisions, sampled from 𝑓2, with a probability of 
2

3
𝐴3. 

5. It may be replaced by a particle sampled from a 

local Maxwellian distribution with a probability 

of 𝐴4. 

2.4 MTRMC Method 

In order to modify the TRMC approach, Taylor series 

expansion is utilized to compute derivatives with 

improved accuracy. 

𝜕𝐹

𝜕𝜏
=

𝐹𝑛+1−𝐹𝑛

∆𝜏
.
 

(21) 

𝐹𝑛+1 = ∑ (𝜏 + ∆𝜏)𝑘𝑓𝑘(𝑣)𝑚
𝑘=0 . (22) 

∆𝜏 =
𝜕𝜏

𝜕𝑡
∆𝜏 =

𝜇∆𝑡

𝐾𝑛
𝑒−

𝜇∆𝑡

𝐾𝑛 . (23) 

The application of (21) to (23) to (9) results in 

derivatives represented in the following form: 

∑ (𝜏+∆𝜏)𝑘𝑓𝑘(𝑣)𝑚
𝑘=0 −∑ 𝜏𝑘𝑓𝑘(𝑣)𝑚

𝑘=0

∆𝜏
=

1

𝜇
𝑃(𝐹, 𝐹).

 
(24) 

Employing (12) to (24) gives: 

𝑃(𝐹, 𝐹) = (𝑃(𝑓0, 𝑓0) + 2𝜏𝑃(𝑓0, 𝑓1)) +

𝜏2(2𝑃(𝑓0, 𝑓2) + 𝑃(𝑓1, 𝑓1) + ⋯ ). 
(25) 

The coefficients 𝑓𝑘(𝑣) can be determined by 

rearranging both sides of equation (25) so that they 

correspond to the same powers of the relaxation time: 

𝑓1 =
∆𝜏

(𝜏 + ∆𝜏) − 𝜏

𝑃(𝑓0, 𝑓0)

𝜇  
 

𝑓2 =
2𝜏∆𝜏

(𝜏 + ∆𝜏)2 − 𝜏2

𝑃(𝑓0, 𝑓1)

𝜇
  

𝑓3 =
3𝜏2∆𝜏

(𝜏 + ∆𝜏)3 − 𝜏3
(

2𝑃(𝑓0, 𝑓2) + 𝑃(𝑓1, 𝑓1)

3𝜇
)  

⋮ (26) 

The MTRMC method is derived by truncating the 

Taylor series expansion in (10) with the coefficients 𝑓𝑘 

calculated from (26). As there are multiple choices for the 

weight functions, the MTRMC method can be represented 

in a general form. 

𝑓𝑛+1 = ∑ 𝐵𝑘𝑓𝑘+𝐵𝑚+1𝑀(𝑣)𝑚
𝑘=0 . (27) 

Equations (6) and (27) demonstrate that the MTRMC 

scheme behaves similarly to the DSMC scheme in the free 

molecular regime where the Knudsen number is large. As 

the Knudsen number decreases, the collision terms 

become time-consuming, and the local Maxwellian 

distribution gradually replaces them. Additionally, as the 

Knudsen number becomes very small, the distribution 

function approaches the local Maxwellian distribution at 

the fluid limit. 

lim
𝜇∆𝑡 𝐾𝑛⁄ →0

𝑓𝑛+1 = 𝑓𝑛.  

  

lim
𝜇∆𝑡 𝐾𝑛⁄ →∞

𝑓𝑛+1 = 𝑀(𝑣). (28) 

This study focuses on using the third order of the 

developed approach (hereafter called MTRMC3), which is 

in line with the TRMC scheme. Specifically, the MTRMC 

approach (27) is considered with the weight functions (16) 

and 𝑚 = 3 to derive the MTRMC3 scheme, which is 

expressed as follows: 

𝑓𝑛+1 = (1 − 𝜏 + 𝜀)𝑓𝑛 + (𝜏 − 𝜏2)
𝑃(𝑓0,𝑓0)

𝜇
+

(𝜏2 − 𝜏3) (
2𝜏

2𝜏+∆𝜏
)

𝑃(𝑓0,𝑓1)

𝜇
+ (𝜏3 −

𝜏5) (
3𝜏2

3𝜏2+3𝜏∆𝜏+∆𝜏2)
2𝑃(𝑓0,𝑓2)+𝑃(𝑓1,𝑓1)

3𝜇
+ 𝜏5𝑀(𝑣)  

 

= 𝐵0𝑓𝑛 + 𝐵1𝑓1 + 𝐵2𝑓2 + 𝐵3𝑓3 + 𝐵4𝑀. (29) 

where 𝜀 = (𝜏 − 𝐵1 − 𝐵2 − 𝐵3 − 𝐵4) > 0. The MTRMC 

method has a key advantage over the DSMC method as it 

can accept larger time steps. This is because the DSMC 

method has a time step limit of 𝜇∆𝑡 𝐾𝑛⁄ ≤ 1, which is not 

present in the MTRMC method due to the use of relaxed 

time and transformed probability distribution functions. 

Additionally, the MTRMC method has modified collision 

functions resulting in smaller number of collisions 

between molecules compared to the TRMC method. As a 

result, the MTRMC method has lower computational 

expense than the TRMC method. The flowchart of the 

MTRMC3 approach is shown in Fig. 1. 

3. THE GEOMETRY AND CALCULATION 

CONDITION 

The present study aims to examine the computational 

efficiency and precision of the MTRMC scheme in 

contrast to the TRMC and DSMC schemes. Specifically, 

the study focuses on the flow of Argon over a flat nano-

plate. The objective is to evaluate the performance of 

MTRMC and compare it with the other two schemes in 

terms of accuracy and computational costs. 

Figure 2 illustrates the geometry and the applied 

boundary conditions. It should be indicated that all 

boundaries except for the plate surface are assumed to be 

free streams. The plate surface is modeled as a diffuse 

reflector (Jahangiri et al., 2012; Amiri-Jaghargh et al., 

2013; Darbandi & Roohi, 2013; Watvisave et al., 2015), 

except for the specular reflector, which is located at the 

initial 10% of the nano-plate's length. The inclusion of a 

specular boundary upstream of the leading edge results in 

a more realistic inlet velocity distribution (Bird, 1994; 

Darbandi & Schneider, 1997; Darbandi & Vakilipour, 

2009; Vakilipour & Darbandi, 2009; Darbandi & Roohi, 

2013;Watvisave et al., 2015). The length 𝐿 and height ℎ of 

the model are specified as 100 𝑛𝑚 and 60 𝑛𝑚, 
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respectively. The cells are uniform horizontally, but 

geometrically progress vertically.  

 

 
Fig. 1 Flowchart of the MTRMC3 approach  

 

 
Fig. 2 Geometry and boundary conditions of flat 

nano-plate 

 

The free stream is composed of mono-atomic Argon 

that flows along the 𝑥-axis at a temperature of 300𝐾. The 

surface temperature is set at 500𝐾. In this study, three free 

stream velocities (14𝑚/𝑠 for case I, 141𝑚/𝑠 for case II, 

and 1412𝑚/𝑠 for case III) are considered in simulations. 

These velocities are chosen to analyze the behavior of the 

nano-plate under flows ranging from low subsonic to 

supersonic velocities. The Knudsen number, inlet 

pressure, and number density of the free stream flow are 

specified as 0.00129, 41.4 𝑀𝑃𝑎, and 1028𝑚𝑜𝑙/𝑚3, 

respectively. The Knudsen number is an indicator 

reflecting the rarefaction degree of the flow. The inter-

molecular collisions are simulated using the variable hard 

sphere (VHS) model. During the simulations, viscosity 

index, and the molecular diameter and mass are set to 

0.81, 4.17 × 10−17𝑚, and 66.3 × 10−27𝑘𝑔, respectively 

(Bird, 1994). 

In the DSMC scheme, the time step is calculated 

based on the constraint 𝜇∆𝑡 𝐾𝑛 ≤ 0⁄  (see equation (6)), 

while this parameter in the TRMC and MTRMC schemes 

is set as a fraction of the free flow time step, 𝐶∆𝑡, in which 

𝐶 ≤ 1. For the current study, the value of 𝐶 is selected as 

0.41, 0.35, and 0.18 for cases I to III, respectively. 

3.1 Grid Independence Analysis 

To obtain accurate results, finer cells are required, but 

at the cost of higher computational CPU time. Therefore, 

a grid independence analysis is conducted using different 

grid resolutions: 300 × 60, 300 × 180, 300 × 360, 

300 × 540, 300 × 720 cells. The cells are refined in the 

vertical direction, as the variation of flow properties in the 

longitudinal direction is small (LeBeau et al., 2003; Shen 

et al., 2003; Darbandi & Roohi, 2013). 

This research investigates the variations of velocity, 

pressure, and temperature distributions across a nano-plate 

using different grid resolutions. The findings suggest that 

compared to temperature and velocity distributions, 

pressure distributions are less affected by cell size. The 

outcomes also indicate that slip velocity and temperature 

distributions remain unaffected with grid resolutions finer 

than 300 × 540. Nonetheless, to ensure grid resolution 

independence, the study employs a grid resolution of 

300 × 720. To ensure accuracy, a minimum of 20 

particles per cell is used, resulting in 4,400,000 particles 

being considered. The results suggest that the chosen grid 

resolution and particle number are appropriate for accurate 

analysis. Figure 3 provides visual representation of the 

comparison of pressure, velocity, and temperature 

distributions over the nano-plate for different grid 

resolutions. 

4. COMPARATIVE ANALYSIS OF RESULTS 

OBTAINED FROM DIFFERENT SIMULATION 

SCHEMES FOR NANO-PLATE FLOW 

This section presents the findings of the MTRMC 

scheme and compares them with those obtained from the 

DSMC, TRMC, and hybrid DSMC-NS schemes. The 

results are presented at 𝑥 𝐿⁄ = 0.2 and 0.8 normal to the 

nano-plate in addition to those over the nano-plate to 

examine the problem more accurately. The aim of this 

comparison is to validate the MTRMC scheme and to gain 

more insight into the problem. 

In Fig. 4, a comparison is presented between the 

temperature distributions obtained by using the MTRMC 

scheme and the DSMC and TRMC schemes for case I with 

a free stream velocity of 𝑈∞ = 14𝑚/𝑠. The results show 

that there is a good agreement between the temperature 

distributions obtained from different schemes. 
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(a) Slip velocity on the plate surface (b) Pressure curves on the plate surface 

 
(c) Temperature curves on the plate surface 

Fig. 3 Grid independency tests 

 

 
 

(a) Distribution of temperature across the plate surface (b) Temperature distributions at 𝑥 𝐿⁄ = 0.2 

 
(c) Temperature distribution at 𝑥 𝐿⁄ = 0.8 

Fig. 4 Comparison of the results obtained from different schemes when 𝑼∞ = 𝟏𝟒 𝒎 𝒔⁄  
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(a) Velocity distributions 

 
(b) Temperature profiles 

 
(c) Temperature distributions at 𝑥 𝐿⁄ = 0.2 

 
(d) Temperature distributions at 𝑥 𝐿⁄ = 0.8 

Fig. 5 Temperature and velocity distributions 

when 𝑼∞ = 𝟏𝟒𝟏 𝒎 𝒔⁄  

 
(a) Velocity distributions 

 
(b) Temperature distributions 

 
(c) Pressure distributions 

Fig. 6 Comparison of the results obtained from 

different techniques for a scenario with a free stream 

velocity of 𝑼∞ = 𝟏𝟒𝟏𝟐 𝒎 𝒔⁄  

 

Figure 5 displays the temperature distributions 

perpendicular along the 𝑥-axis over the plate and along the 

𝑦 -axis at 𝑥 𝐿⁄ = 0.2  and 0.8 , and 𝑈∞ = 14𝑚/𝑠 . A 

comparison between the MTRMC scheme and the 

conventional DSMC and TRMC schemes indicates a 

significant level of resemblance. 

Figures 6 and 7 demonstrate a comparison between 

the outcomes of various approaches for a scenario with a 

free stream velocity of 𝑈∞ = 1412 𝑚 𝑠⁄ . Besides, the 

pressure, temperature, and velocity distributions are 

studied at different longitudinal distances to examine the 

problem more accurately. The results reveal a remarkable 

similarity between the results obtained from the MTRMC, 

DSMC, TRMC, and hybrid DSMC-NS techniques. 
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(a) Temperature distributions at 𝑥 𝐿⁄ = 0.2 

 
(b) Temperature distributions at 𝑥 𝐿⁄ = 0.8 

 
(c) Pressure distributions at 𝑥 𝐿⁄ = 0.2 

 
(d) Pressure distributions at 𝑥 𝐿⁄ = 0.8 

Fig. 7 Comparison of the results at different 

locations (x/L = 0.2 and 0.8) obtained from different 

schemes for the scenario with 𝑼∞ = 𝟏𝟒𝟏𝟐 𝒎 𝒔⁄  

Based on Fig. 6, it can be inferred that the slip velocity 

at the front edge of the nano-plate is comparable to the 

velocity of the free stream. The slip velocity gradually 

decreases along the length of the nano-plate, but it does 

not completely vanish. Moreover, the temperature and 

pressure distributions exhibit a significant jump at the 

leading edge of the nano-plate; however, such jumps 

decrease along the length of the nano-plate. It is notable 

that the jump in the pressure distributions diminishes 

almost entirely along the length of the nano-plate, whereas 

the temperature asymptotically remains considerably 

higher than both the wall and free stream temperatures. 

This phenomenon may originate from the creation of an 

oblique shock wave over the nano-plate in this case study 

with 𝑈∞ = 1412 𝑚 𝑠⁄ . 

In Fig. 7, the pressure and temperature along the y-

axis at different locations are investigated. The results 

indicate that the maximum temperature for each 

temperature distribution exceeds the temperature of the 

surface of the nano-plate or the free stream flow, and it is 

located in close proximity to the surface of the nano-plate. 

This observation may suggest that the oblique shock wave 

discussed earlier is formed near the surface of the nano-

plate. Comparing the obtained results with those reported 

by Darbandi and Roohi (Darbandi & Roohi, 2013) reveals 

that the MTRMC approach is capable of accurately 

simulating the shock wave. 

Figures 4 through 7 clearly show that the MTRMC 

approach produces results that are consistent with the 

TRMC and DSMC methods when simulating the flow of 

Argon over a nano-plate at various free stream velocities, 

ranging from low (i.e. 𝑈∞ = 14 𝑚 𝑠⁄ ) to supersonic (i.e. 

𝑈∞ = 1412 𝑚 𝑠⁄ ). 

In Fig. 8, the consumed computational CPU time is 

plotted against the physical time at various free stream 

velocities for various approaches. The comparisons 

reveal that, for the same physical time, the MTRMC 

approach requires significantly less computational CPU 

time than the DSMC and TRMC approaches. The 

significant difference in computational expenses between 

the MTRMC and the DSMC schemes is due to the 

replacement of intermolecular collisions with the local 

Maxwellian distribution, as well as the use of the relaxed 

time (𝜏) which allows for the utilization of higher time 

steps (as seen in (6) and (29)). Furthermore, the improved 

computational efficiency of the MTRMC scheme, as 

compared to the TRMC approach, originate from 

modified collision functions that involve a smaller 

number of collisions between molecules (as shown in 

(20) and (29)). 

Table 1 shows the normalized computational CPU 

times for various approaches at different free stream 

velocities. The normalization process is conducted 

utilizing data of the DSMC approach. The table reveals 

that the computational CPU time required by the 

MTRMC scheme to simulate a plate subjected to a free 

stream is significantly less than that required by the 

DSMC and TRMC approaches. This difference is more 

prominent when the comparison is made with the 

computational CPU time of the DSMC method. 
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(a) Case I (𝑈∞ = 14 𝑚 𝑠⁄ ) 

 
(b) Case II (𝑈∞ = 141 𝑚 𝑠⁄ ) 

 
(c) Case III (𝑈∞ = 1412 𝑚 𝑠⁄ ) 

Fig. 8 Computational expenses of different schemes 

under various free stream velocities 
 

Table 1 Normalized computational CPU times for 

different schemes under different free stream 

velocities 

𝑈∞ 
Normalized CPU time 

14 𝑚 𝑠⁄  141 𝑚 𝑠⁄  500 𝑚 𝑠⁄  800 𝑚 𝑠⁄  1000 𝑚 𝑠⁄  

DSMC 1.000 1.000 1.000 1.000 1.000 

TRMC 0.940 0.774 0.595 0.572 0.547 

MTRM

C 
0.894 0.730 0.561 0.533 0.498 

 

Fig. 9 Comparison of CPU time in MTRMC and 

DSMC techniques 

 

Figure 9 shows the percentage alleviation in the 

required computational CPU time for the MTRMC 

scheme compared to the DSMC scheme. The results 

indicate that the reduction in CPU time increases 

significantly with increasing free stream velocity. For free 

stream velocities above 1000 𝑚 𝑠⁄ , the alleviation in CPU 

time reaches an asymptotic value of approximately 53%. 

5. COMPARISON OF THE RESULTS FOR VARIOUS 

CASES 

The MTRMC scheme produced streamlines overlaid 

on temperature contours for various stream velocities in 

Fig. 10. The findings suggest that the peak temperature 

significantly increases with increasing free stream 

velocity, with the exception of case I where the 

temperature increase is minimal. For case III, a hot spot 

emerges near the nano-plate's leading edge, possibly due 

to presence of a shock wave. The downstream streamlines 

are more impacted by the nano-plate at lower free stream 

velocities, potentially due to the larger velocity boundary 

layer. Overall, the results from the MTRMC scheme offer 

valuable insights into the behavior of the nano-plate 

exposed to the free Argon flow under diverse flow 

conditions. 

Distributions of shear stress, velocity, and 

temperature over the nano-plate under various free stream 

velocities are presented in Fig. 11. 

The slip velocity is defined as the difference between 

the velocity of the fluid in the vicinity of the surface of the 

nano-plate and the velocity of the surface of the nano-

plate. The slip velocity distributions over the nano-plate 

obtained from the MTRMC scheme for various free 

stream velocities are presented in Fig. 11. The slip velocity 

distributions show that the maximum slip velocity over the 

surface of the nano-plate increases as the free stream 

velocity increases. This indicates that the effect of the slip 

velocity becomes more significant for higher free stream 

velocities. 



M. Eskandari and S. S. Nourazar/ JAFM, Vol. 17, No. 1, pp. 261-272, 2024.  

 

270 

 
(a) case I (𝑈∞ = 14 𝑚 𝑠⁄ ) 

 
(b) case II (𝑈∞ = 141 𝑚 𝑠⁄ ) 

 
(c) case III (𝑈∞ = 1412 𝑚 𝑠⁄ ) 

Fig. 10 Velocity streamlines and temperature 

contours in different scenarios 
 
The rapid increase in temperature and pressure 

distributions and the resulting hot spot in case III can be 

explained by the formation of an oblique shock wave due 

to the supersonic free stream velocity (𝑈∞ = 1412 𝑚 𝑠⁄ ). 

Figure 12 shows the contours of the local Mach number 

for case III with the 𝑀𝑎 = 1 isoline highlighted, revealing 

that the shock wave is formed very near the plate surface. 

6. CONCLUSION 

This article focuses on the development of the 

MTRMC scheme. To this end, Taylor series expansion 

was applied to the Wild function to modify collision terms 

and achieve accurate results with a smaller number of 

collisions between molecules. The MTRMC scheme was 

applied to accurately simulate the flow of free stream 

Argon over a nano-plate, covering a range of free stream 

velocities from low subsonic to supersonic. The results 

showed that the MTRMC scheme was capable of 

accurately simulating the flow at all velocities tested. 

Additionally, it was found that the CPU time of the 

MTRMC scheme was significantly lower than that of the  

 

 

 
Fig. 11 Temperature contours and streamlines in the 

studied cases 

 

 
Fig. 12 Contour of local Mach number in case III 

 

DSMC and TRMC schemes for the same physical time. 

The reduction in CPU time was more pronounced at 

higher free stream velocities, and the MTRMC scheme 

showed up to a 51% reduction in CPU time compared to 

the DSMC scheme. Overall, the results demonstrated that 

the MTRMC scheme could be a more efficient and 



M. Eskandari and S. S. Nourazar/ JAFM, Vol. 17, No. 1, pp. 261-272, 2024.  

 

271 

accurate method for simulating rarefied gas flows over 

surfaces at a range of free stream velocities. 
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