Bagnold, R. A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.
Proceeding of the Royal Society A, 225, 49–63.
https://doi.org/10.1098/rspa.1954.0186.
Bogoni, M., Putti, M., & Lanzoni, M. (2017). Modeling meander morphodynamics over self-formed heterogeneous floodplains.
Water, 53(6), 5137-5157.
https://doi.org/ 10.1002/2017WR020726.
Camporeale, C., Perona, P., Porporato, A., & Ridolfi, L. (2002). On the long-term behavior of meandering rivers.
Water Resources Research, 41(12).
https://doi.org/10.1029/2005WR004109.
Coz, J. L., Michalkova, M. S., Hauet, A., Comaj, M., Dramais, G., Holubova, K., Piegay, H., & Paquier, A. (2010). Morphodynamics of the exit of a cutoff meander: Experimental findings from field and laboratory studies.
Earth Surface Processes and Landforms, 35(3), 249–261.
https://doi.org/ 10.1002/esp.1896.
Crosato, A. (2008). Analysis and modelling of river meandering. [PhD thesis, Delf University of Technology], Delf, Netherland.
Darby, S. E., Alabyan, A. M., & Wiel, M. J. V. D. (2002). Numerical simulation of bank erosion and channel migration in meandering rivers.
Water Resources Research, 38(9), 1163–1174.
https://doi.org/10.1029/2001WR000602.
Delannay, R., Valance, A., Mangeney, A., Roche, O.,
&
Richard, P., (2017). Granular and particle-laden flows: from laboratory experiments to field observations.
Journal of Physics D: Applied Physics, 50(5).
https://doi.org/10.1088/13616463/50/5/05 3001.
Dente, E., Lensky, N., Morin, E., & Enzel, Y. (2021)
. From straight to deeply incised meandering channels: Slope impact on sinuosity of confined streams.
Earth Surface Processes and Landform,
46(563), 1041-1055.
https://doi.org/10.1002/esp.5085.
Friedkin, J. F. (1945). A laboratory study of the meandering of alluvial rivers. Engineers Waterways Experiment Stations.
Gu, L., Zhang, S., He, L., Chen, D. Blanckaert, K., Ottevanger, W., & Zhang, Y. (2016). Modeling flow pattern and evolution of meandering channels with a nonlinear model.
Water, 8(10).
https://doi.org/10.3390/w8100418.
Hagerman, J. R., & Williams J. D. (2000). Meander shape and the designs of stable meanders. Agricultural Research Service.
Hu, P., & Yu, M. (2023). Experimental study of secondary flow in narrow and sharp open channels bends. Journal of Applied fluid Mechanics, 16(9). https://doi.org/10.47176/JAFM.16.09.1672
Iverson, R. M. (1997). The physics of debris flows.
Reviews of Geophysics, 35(3), 245–296. https://doi.org/
10.1029/97RG00426.
Iverson, R. M. (2003). The debris-flow rheology myth. Presented at the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment.
Iverson, R. M., & George, D. L. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy.
I. Physical basis
. Proceeding of Royal Society A, 470, 20130819.
https://doi.org/10.1098/rspa.2013.0819.
Kafle, J., Acharya, G., Kattel, P., & Pokhrel P. R. (2022). Impact of variation of size of the initial release mass in the dynamics of landslide generated tsunami.
International Journal of Modeling, Simulation, and Scientific Computing, 13(5), 217–225.
https://doi.org/10.1142/S1793962322500556.
Kafle, J., Dangol, B. R., Tiwari, C. N., & Kattel, P. (2023). Dynamics of landslide-generated tsunamis and their dependence on the particle concentration of initial release mass.
European Journal of Mechanics - B/Fluids, 97, 146–161.
https://doi.org/10.1016/j.euromechflu.2022.10.003.
Kafle, J., Kattel, P., Pokhrel, P. R., & Khattri, K. B. (2021). Numerical experiments on effect of topographical slope changes in the dynamics of landslides generated water waves and submarine mass flows.
Journal of Applied Fluid Mechanics, 14(3), 861-876.
https://doi.org/10.47176/jafm.14.03.31740
Kafle, J., Pokhrel, P. R. Khattri, K. B., Kattel, P., Tuladhar, B. M., & Pudasaini, S. P. (2016). Submarine landslide and particle transport in mountain lakes, reservoirs and hydraulic plants.
Annals of Glaciology, 57(71), 232– 244.
https://doi.org/10.3189/2016AoG71A034.
Kattel, P., & Tuladhar, B. M. (2018). Interaction of two-phase debris flow with lateral converging shear walls.
Journal of Nepal Mathematical Society, 1(2), 40–52.
https://doi.org/10.3126/jnms.v1i2.41490.
Kattel, P., Kafle, J., Fischer, J.-T. Mergili, M. Tuladhar, B. M., & Pudasaini, S. P. (2018). Interaction of two-phase debris flow with obstacles.
Engineering Geology, 242, 197–217.
https://doi.org/10.1016/j.enggeo.2018.05.023.
Kattel, P., Khattri, K. B., Pokhrel, P. R., Kafle, J., Tuladhar, B. M., & Pudasaini, S. P. (2016). Simulating glacial lakea two-phase mass flow model.
Annals of Glaciology, 57(71), 349–358.
https://doi.org/10.3189/2016AoG71A039.
Kinoshita, R. (1961). An investigation of channel deformation in Ishikari river. Science and Technology Agency, Bureau of Resources.
Kopera, K. N. (2014). Identifying the distinct rock types in the streambed of muddy run. The Juniata Journal of Geology, 1, 1–7.
Langbein, W. B., & Leopold, L. B. (1966).
River meanders – Theory of minimum variance. Geological Survey Professional Paper 422-H. United States Government Printing Office, Washington, D. C.
https://doi.org/10.3133/pp422H.
Montgomery, D. R. & Buffington, J. M. (1998). Channel processes, classification and response. In R. Naiman & R. Bilby (Eds.), River Ecology and Management, Springer-Verilog, New York.
Pastor, M., Yague, A., Stickle, M.M., Manzanal, D., & Mira, P. (2018). A two-phase SPH model for debris flow propagation.
International Journal of Numerical and Analytical Methods in Geomechanics, 42(4), 418–448.
https://doi.org/ 10.1002/nag.2748.
Pierson, T. C. (2005a)
. Hyperconcentrated flow - transitional process between water flow and debris flow, in: Jakob, M., Hungr, O. (Eds.), Debris-Flow Hazards and Related Phenomena, (pp. 159-202) Springer Praxis, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-27129-5_8.
Pierson, T. C. (2005b).
Distinguishing between debris flows and floods for field evidence in small watersheds. U.S. Geological Survey Fact Sheet, 2004-3142.
https://doi.org/10.3133/fs20043142.
Rozovskii, I. L. (1957). Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, Israel Program for Scientific Translation.
Stolum, H. H. (1996) Landslide tsunamis propagating along the plane beach. Science, 271, 1710-1713.
Tai, Y. C., Noelle, S., Gray, J. M. N. T., & Hutter, K. (2002). Shock- capturing and front-tracking methods for granular avalanches.
Journal of Computational Physics, 175, 269-301.
https://doi.org/10.1006/jcph.2001.6946.
Takahasi, T. (2007). Debris flow: Mechanics, prediction and counter measures. Taylor and Francis, New York.
Tulapurkara, E. G., Gowda, B. H. L., & Swain, S. K. (1994). Reverse flow in channel-effect of front and rear obstructions.
Physics of Fluids, 6(12), 3847–3853.
https://doi.org/10.1063/1.868376.
Wilford, D., Sakals, M. E., Innes, J. L., Sidle, R. & Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics.
Landslides, 1(1), 61–66.
https://doi.org/ 10.1007/s10346-003-0002-0.
Yong, N. S., Mohamad, I. N., & Lee, W. K. (2018). Experimental study on river meandering planform pattern. International
Journal of Engineering & Technology, 7(11), 214-217.
https://doi.org/10.14419/ijet.v7i3.11.15965.