Experimental Study on the Dynamics of a Moving Droplet Impacting a Sessile Droplet

Document Type : Regular Article

Authors

Key Laboratory of Fluid Transmission Technology of Zhejiang Province Zhejiang Sci-Tech University, Hangzhou, 310018, China

Abstract

The phenomenon of droplets impacting droplets is common in many fields including the chemical, nuclear, and aerospace industries. In this paper, high-speed photography technology is used to obtain the variation law and evolution properties exhibited by droplets colliding with sessile droplets of varying sizes. We further explored how the Weber number (We) and volume ratio (Vp/Vi) influence the behavior of droplets colliding with sessile droplets. The phenomenon of droplets impacting sessile droplets of different volumes is different from that of droplets impacting liquid films. In terms of droplet spreading, compression and the non-splashing liquid crown, the phenomena and laws reported in the present study are applicable for 1 ≤ We ≤ 165 and droplet volume ratios of 1 ≤ Vp/Vi ≤ 6. With a low Weber number, the droplet compresses and deforms downward without coalescence at the initial stage of collision. A high Weber number results in a no-splashing liquid crown. These findings provide important insights into the dynamics of droplet-droplet interactions.

Keywords

Main Subjects


Aiswal, A. K. J., & Khandekar, S. (2021). Dynamics of a droplet impacting a sessile droplet on a superhydrophobic surface :role of boundary conditions during droplet placement. Journal of Flow Visualization and Image Processing, 28(4), 69-89. https://doi.org/10.1615/JFlowVisImageProc.2021037109
Bai, C., & Gosman, A. D. (1995). Development of Methodology for Spray Impingement Simulation. SAE Technical Papers, 69-87. https://doi.org/10.4271/950283
Bernard, R., Vaikuntanathan, V., Weigand, B., & Lamanna, G. (2020). On the crown rim expansion kinematics during droplet impact on wall-films. Experimental Thermal and Fluid Science, 118, 110168. https://doi.org/10.1016/j.expthermflusci.2020.110168
Chan, D. Y. C., Klaseboer, E., & Manica, R. (2011). Film drainage and coalescence between deformable drops and bubbles. Soft Matter, 7(6), 2235-2264. https://doi.org/10.1039/C0SM00812E
Chen, B., Tian, R., & Mao, F. (2020). Analysis of special phenomena of droplet impact on horizontal liquid film at low velocity. Annals of Nuclear Energy, 136, 107038. https://doi.org/10.1016/j.anucene.2019.107038
Chen, D. S., Wang, T. T., Ming, L. N., Qiu, M., & Lin, Z. (2022) Dynamic characteristics of moving droplets impacting sessile droplets with different Reynolds numbers. Physics of Fluids, 34 (11), 117120. https://doi.org/10.1063/5.0109293
Chen, N., Chen, H., & Amirfazli, A. (2017). Drop impact onto a thin film: Miscibility effect. Physics of Fluids, 29(9), 1-7. https://doi.org/10.1063/1.5001743
Chen, X., & Yang, V. (2020). Direct numerical simulation of multiscale flow physics of binary droplet collision. Physics of Fluids, 32(6), 062103. https://doi.org/10.1063/5.0006695
Chubynsky, M. V., Belousov, K. I., Lockerby, D. A., & Sprittles, J. E. (2020). Bouncing off the walls: The influence of gas-kinetic and van der waals effects in drop impact. Physical Review Letters, 124(8), 084501. https://doi.org/10.1103/PhysRevLett.124.084501
Dalili, A., Chandra, S., Mostaghimi, J., Fan, H., & Simmer, J. (2014). Formation of liquid sheets by deposition of droplets on a surface. Journal of Colloid Interface Science, 418, 292-299. https://doi.org/10.1016/j.jcis.2013.12.033
Deka, H., Biswas, G., Chakraborty, S., & Dalal, A. (2019). Coalescence dynamics of unequal sized drops. Physics of Fluids, 31, 012105. https://doi.org/10.1063/1.5064516
Emdadi, M., & Pournaderi, P. (2019). Study of droplet impact on a wall using a sharp interface method and different contact line models. Journal of Applied Fluid Mechanics, 12(4), 1001-1012. https://doi.org/10.29252/jafm.12.04.29029
Farokhirad, S., Morris, J. F., & Lee, T. (2015). Coalescence-induced jumping of droplet: Inertia and viscosity effects. Physics of Fluids, 27(10), 1-15. https://doi.org/10.1063/1.4932085
Feng, J. Q. (2017). A computational study of high-speed microdroplet impact onto a smooth solid surface. Journal of Applied Fluid Mechanics, 10(1), 243-256. https://doi.org/10.18869/acadpub.jafm.73.238.26440
Fujimoto, H., Tong, A. Y., & Takuda, H. (2008). Interaction phenomena of two water droplets successively impacting onto a solid surface. International Journal of Thermal Sciences, 47(3), 229-236. https://doi.org/10.1016/j.ijthermalsci.2007.02.006
Hamdan, K. S., Kim, D., & Moon, S. (2015). Droplets behavior impacting on a hot surface above the Leidenfrost temperature. Annals of Nuclear Energy, 80, 338-347. https://doi.org/10.1016/j.anucene.2015.02.021
Huang, Y. M., Sheng, Y. J., & Tsao, H. K. (2022). Peculiar encounter between self-propelled droplet and static droplet: swallow, rerouting, and recoil. Journal of Molecular Liquids, 347, 118378. https://doi.org/10.1016/j.molliq.2021.118378
Karn, A., De, R., & Kumar, A. (2020). Some insights into drop impacts on a hydrophobic surface. Journal of Applied Fluid Mechanics, 13(2), 527-536. https://doi.org/10.2139/ssrn.3363043
Kumar, M., Bhardwaj, R., & Sahu, K. C. (2020). Coalescence dynamics of a droplet on a sessile droplet. Physics of Fluids, 32(1), 012104. https://doi.org/10.1063/1.5129901
Li, J., Huang, Z., & Liu, Q. (2018). Dynamics of a successive train of monodispersed millimetric-sized droplets impact on solid surfaces at low Weber number. Experimental Thermal and Fluid Science, 102, 81-93. https://doi.org/10.1016/j.expthermflusci.2018.08.029
Li, P. F., Wang, S. F., & Dong, W. L. (2019). Capillary wave and initial spreading velocity at impact of drop onto a surface. Journal of Applied Fluid Mechanics, 12(4), 1265-1272. https://doi.org/10.29252/JAFM.12.04.29614
Liang, G., Guo, Y., Shen, S., & Yu, H. (2014). A study of a single liquid drop impact on inclined wetted surfaces. Acta Mechanica, 225(12), 3353-3363. https://doi.org/10.1007/s00707-014-1110-8
Lim, T., Han, S., Chung, J., Chung, J. T., Ko, S., & Grigoropoulos, C. P. (2009). Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate. International Journal of Heat Mass Transfer, 52, 431-441. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.028
Luo, J., Wu, S. Y., Xiao, L., & Chen, Z. L. (2021). Parametric influencing mechanism and control of contact time for droplets impacting on the solid surfaces. International Journal of Mechanical Sciences, 197, 106333. https://doi.org/10.1016/j.ijmecsci.2021.106333
Ma, H., Liu, C., Li, X., Huang, H., & Dong, J. (2019). Deformation characteristics and energy conversion during droplet impact on a water surface. Physics of Fluids, 31(6), 062108. https://doi.org/10.1063/1.5099228
Moghtadernejad, S., Lee, C., & Jadidi, M. (2020). An introduction of droplet impact dynamics to engineering students. Fluids, 5(3), 107. https://doi.org/10.3390/fluids5030107
Moqaddam, A., Chikatamarla, S. S., & Karlin, I. V. (2016). Simulation of binary droplet collisions with the entropic lattice Boltzmann method. Physics of Fluids, 28(2), 1-21. https://doi.org/10.1063/1.4942017
Nikolopoulos, N., Strotos, G., Nikas, K. S., & Bergeles, G. (2012). The effect of Weber number on the central binary collision outcome between unequal-sized droplets. International Journal of Heat and Mass Transfer, 55(7-8), 2137-2150. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.017
Nikolopoulos, N., Strotos, G., Nikas, K. S., & Gavaises, M., et al. (2010). Experimental investigation of a single droplet impact onto a sessile drop. Atomization and Sprays, 20(10), 909-922. https://doi.org/10.1615/AtomizSpr.v20.i10.70
Pittoni, P. G., Tsao, H. K., & Lin, S. Y. (2014). Water drop impingement on graphite substrates with random dilute defects. Experimental Thermal and Fluid Science, 53, 142-146. https://doi.org/10.1016/j.expthermflusci.2013.11.021
Qin, M., Tang, C., Tong, S., Zhang, P., & Huang, Z. (2019). On the role of liquid viscosity in affecting droplet spreading on a smooth solid surface. International Journal of Multiphase Flow, 117, 53-63. https://doi.org/10.1016/j.ijmultiphaseflow.2019.05.002
Raman, K. A., Jaiman, R. K., Lee, T. S., & Low, H. T. (2016). Lattice boltzmann study on the dynamics of successive droplets impact on a solid surface. Chemical Engineering Science, 145, 181-195. https://doi.org/10.1016/j.ces.2016.02.017
Stone, H. A., Stroock, A. D., & Ajdari, A. (2004). Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36, 381-411. https://doi.org/10.1146/annurev.fluid.36.050802.122124
Ukiwe, C., Mansouri, A., & Kwok, D. Y. (2005). The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and CO2H terminal groups. Journal of Colloid and Interface Science, 285(2), 760-768. https://doi.org/10.1016/j.jcis.2004.12.027
Wakefield, J., Tilger, C. F., & Oehlschlaeger, M. A. (2016). The interaction of falling and sessile drops on a hydrophobic surface. Experimental Thermal and Fluid Science, 79, 36-43. https://doi.org/10.1016/j.expthermflusci.2016.06.022
Wang, L., Feng, J., Dang, T., & Peng, X. (2021). Dynamics of oil droplet impacting and wetting on the inclined surfaces with different roughness. International Journal of Multiphase Flow, 135, 103501. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103501
Yang, J., & Lee, C. (2022). Experimental study on phenomena of single water droplet impacts on liquid surfaces: Pattern maps and correlations. Experimental Thermal and Fluid Science, 130, 110480. https://doi.org/10.1016/j.expthermflusci.2021.110480
Yoon, Y., Baldessari, F., Ceniceros, H. D., & Leal, L. G. (2007). Coalescence of two equal-sized deformable drops in an axisymmetric flow. Physics of Fluids, 19(10), 102102. https://doi.org/10.1063/1.2772900
Zhong, Y., Dong, X., Yin, Z., & Fang, H. (2020). Theoretical design of inkjet process to improve delivery efficiency. Journal of Applied Fluid Mechanics, 13(1), 275-286. https://doi.org/10.29252/jafm.13.01.30395