Aiswal, A. K. J., & Khandekar, S. (2021). Dynamics of a droplet impacting a sessile droplet on a superhydrophobic surface :role of boundary conditions during droplet placement.
Journal of Flow Visualization and Image Processing, 28(4), 69-89.
https://doi.org/10.1615/JFlowVisImageProc.2021037109
Bai, C., & Gosman, A. D. (1995). Development of Methodology for Spray Impingement Simulation.
SAE Technical Papers, 69-87.
https://doi.org/10.4271/950283
Chan, D. Y. C., Klaseboer, E., & Manica, R. (2011). Film drainage and coalescence between deformable drops and bubbles.
Soft Matter,
7(6), 2235-2264.
https://doi.org/10.1039/C0SM00812E
Chen, D. S., Wang, T. T., Ming, L. N., Qiu, M., & Lin, Z. (2022) Dynamic characteristics of moving droplets impacting sessile droplets with different Reynolds numbers.
Physics of Fluids, 34 (11), 117120.
https://doi.org/10.1063/5.0109293
Chen, X., & Yang, V. (2020). Direct numerical simulation of multiscale flow physics of binary droplet collision.
Physics of Fluids, 32(6), 062103.
https://doi.org/10.1063/5.0006695
Chubynsky, M. V., Belousov, K. I., Lockerby, D. A., & Sprittles, J. E. (2020). Bouncing off the walls: The influence of gas-kinetic and van der waals effects in drop impact.
Physical Review Letters,
124(8), 084501.
https://doi.org/10.1103/PhysRevLett.124.084501
Dalili, A., Chandra, S., Mostaghimi, J., Fan, H., & Simmer, J. (2014). Formation of liquid sheets by deposition of droplets on a surface.
Journal of Colloid Interface Science, 418, 292-299.
https://doi.org/10.1016/j.jcis.2013.12.033
Deka, H., Biswas, G., Chakraborty, S., & Dalal, A. (2019). Coalescence dynamics of unequal sized drops.
Physics of Fluids, 31, 012105.
https://doi.org/10.1063/1.5064516
Emdadi, M., & Pournaderi, P. (2019). Study of droplet impact on a wall using a sharp interface method and different contact line models.
Journal of Applied Fluid Mechanics,
12(4), 1001-1012.
https://doi.org/10.29252/jafm.12.04.29029
Farokhirad, S., Morris, J. F., & Lee, T. (2015). Coalescence-induced jumping of droplet: Inertia and viscosity effects.
Physics of Fluids, 27(10), 1-15.
https://doi.org/10.1063/1.4932085
Huang, Y. M., Sheng, Y. J., & Tsao, H. K. (2022). Peculiar encounter between self-propelled droplet and static droplet: swallow, rerouting, and recoil.
Journal of Molecular Liquids,
347, 118378.
https://doi.org/10.1016/j.molliq.2021.118378
Karn, A., De, R., & Kumar, A. (2020). Some insights into drop impacts on a hydrophobic surface.
Journal of Applied Fluid Mechanics, 13(2), 527-536.
https://doi.org/10.2139/ssrn.3363043
Kumar, M., Bhardwaj, R., & Sahu, K. C. (2020). Coalescence dynamics of a droplet on a sessile droplet.
Physics of Fluids, 32(1), 012104.
https://doi.org/10.1063/1.5129901
Li, J., Huang, Z., & Liu, Q. (2018). Dynamics of a successive train of monodispersed millimetric-sized droplets impact on solid surfaces at low Weber number.
Experimental Thermal and Fluid Science,
102, 81-93.
https://doi.org/10.1016/j.expthermflusci.2018.08.029
Li, P. F., Wang, S. F., & Dong, W. L. (2019). Capillary wave and initial spreading velocity at impact of drop onto a surface.
Journal of Applied Fluid Mechanics,
12(4), 1265-1272.
https://doi.org/10.29252/JAFM.12.04.29614
Lim, T., Han, S., Chung, J., Chung, J. T., Ko, S., & Grigoropoulos, C. P. (2009). Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate.
International Journal of Heat Mass Transfer,
52, 431-441.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.028
Luo, J., Wu, S. Y., Xiao, L., & Chen, Z. L. (2021). Parametric influencing mechanism and control of contact time for droplets impacting on the solid surfaces.
International Journal of Mechanical Sciences, 197, 106333.
https://doi.org/10.1016/j.ijmecsci.2021.106333
Ma, H., Liu, C., Li, X., Huang, H., & Dong, J. (2019). Deformation characteristics and energy conversion during droplet impact on a water surface.
Physics of Fluids,
31(6), 062108.
https://doi.org/10.1063/1.5099228
Moqaddam, A., Chikatamarla, S. S., & Karlin, I. V. (2016). Simulation of binary droplet collisions with the entropic lattice Boltzmann method.
Physics of Fluids,
28(2), 1-21.
https://doi.org/10.1063/1.4942017
Nikolopoulos, N., Strotos, G., Nikas, K. S., & Bergeles, G. (2012). The effect of Weber number on the central binary collision outcome between unequal-sized droplets.
International Journal of Heat and Mass Transfer,
55(7-8), 2137-2150.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.017
Nikolopoulos, N., Strotos, G., Nikas, K. S., & Gavaises, M., et al. (2010). Experimental investigation of a single droplet impact onto a sessile drop.
Atomization and Sprays,
20(10), 909-922.
https://doi.org/10.1615/AtomizSpr.v20.i10.70
Qin, M., Tang, C., Tong, S., Zhang, P., & Huang, Z. (2019). On the role of liquid viscosity in affecting droplet spreading on a smooth solid surface.
International Journal of Multiphase Flow,
117, 53-63.
https://doi.org/10.1016/j.ijmultiphaseflow.2019.05.002
Raman, K. A., Jaiman, R. K., Lee, T. S., & Low, H. T. (2016). Lattice boltzmann study on the dynamics of successive droplets impact on a solid surface.
Chemical Engineering Science,
145, 181-195.
https://doi.org/10.1016/j.ces.2016.02.017
Ukiwe, C., Mansouri, A., & Kwok, D. Y. (2005). The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and CO2H terminal groups.
Journal of Colloid and Interface Science,
285(2), 760-768.
https://doi.org/10.1016/j.jcis.2004.12.027
Yoon, Y., Baldessari, F., Ceniceros, H. D., & Leal, L. G. (2007). Coalescence of two equal-sized deformable drops in an axisymmetric flow.
Physics of Fluids,
19(10), 102102.
https://doi.org/10.1063/1.2772900
Zhong, Y., Dong, X., Yin, Z., & Fang, H. (2020). Theoretical design of inkjet process to improve delivery efficiency.
Journal of Applied Fluid Mechanics,
13(1), 275-286.
https://doi.org/10.29252/jafm.13.01.30395