Aboudaoud, S., Touzani, S., Abderafi, S., & Cheddadi, A. (2023). CFD simulation of air-glass beads fluidized bed hydrodynamics.
Journal of Applied Fluid Mechanics,
16(9), 1778-1791.
https://doi.org/10.47176/jafm.16.09.1742
Alzate Hernández, J. D. (2016). CFD simulation of an industrial FCC regenerator. Escuela de Procesos y Energía.
Amblard, B., Singh, R., Gbordzoe, E., & Raynal, L. (2017). CFD modeling of the coke combustion in an industrial FCC regenerator.
Chemical Engineering Science,
170, 731-742.
https://doi.org/10.1016/j.ces.2016.12.055
Ansys, I. J. C. (2011). Ansys Fluent theory guide.
Berrouk, A. S., Huang, A., Bale, S., Thampi, P., & Nandakumar, K. (2017). Numerical simulation of a commercial FCC regenerator using multiphase particle-in-cell methodology (MP-PIC).
Advanced Powder Technology,
28(11), 2947-2960.
https://doi.org/10.1016/j.apt.2017.09.002
Chang, J., Wang, G., Lan, X., Gao, J., & Zhang, K. (2013). Computational investigation of a turbulent fluidized-bed FCC regenerator.
Industrial & Engineering Chemistry Research,
52(11), 4000-4010.
https://doi.org/10.1021/ie3013659
Chang, J., Zhao, J., Zhang, K., & Gao, J. (2016). Hydrodynamic modeling of an industrial turbulent fluidized bed reactor with FCC particles. Powder Technology, 304, 134-142. https://doi.org/10.1016/j.powtec.2016.04.048
Chen, L., Ma, H., Ma, G., Pan, G., Li, P., & Sun, Z. (2022). Performance improvement prediction of push chain moist-mix concrete spraying machine employing orifice plate.
Journal of Mechanical Science and Technology,
36(6), 2889-2901.
https://doi.org/10.1007/s12206-022-0521-z
Chu, K., & Yu, A. (2008). Numerical simulation of the gas− solid flow in three-dimensional pneumatic conveying bends.
Industrial & Engineering Chemistry Research,
47(18), 7058-7071.
https://doi.org/10.1021/ie800108c
Da Silva, T. C., Pinto, J. F., Santos, F. M., dos Santos, L. T., Aranda, D. A., Ribeiro, F., . . . Pereira, M. M. (2015). Vanadium and alumina modified with groups I and II elements for CO
2 and coke reaction under fluid catalytic cracking process.
Applied Catalysis B: Environmental,
164, 225-233.
https://doi.org/10.1016/j.apcatb.2014.09.028
De Mello, L. F., Gobbo, R., Moure, G. T., & Miracca, I. (2013). Oxy-combustion technology development for Fluid Catalytic Crackers (FCC)–large pilot scale demonstration.
Energy procedia,
37, 7815-7824.
https://doi.org/10.1016/j.egypro.2013.06.562
Digne, R., Feugnet, F., & Gomez, A. (2014). A technical and economical evaluation of CO
2 capture from fluidized catalytic cracking (FCC) flue gas.
Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles,
69(6), 1081-1089.
https://doi.org/10.2516/ogst/2013209
Dos Santos, L. T., Santos, F. M., Silva, R. S., Gomes, T. S., Esteves, P. M., Pimenta, R. D., . . . Pereira, M. M. (2008). Mechanistic insights of CO
2-coke reaction during the regeneration step of the fluid cracking catalyst.
Applied Catalysis A: General,
336(1-2), 40-47.
https://doi.org/10.1016/j.apcata.2007.10.005
Erdoğan, A., & Daşkın, M. (2023). Comparing of CFD contours using image analysing method: a study on velocity distributions.
Black Sea Journal of Engineering and Science, 6(4), 633-638.
https://doi.org/10.34248/bsengineering.1310711
Fluent, A. (2009). ANSYS Fluent 12.0 user’s guide. Ansys Inc, 15317, 1-2498.
Gao, J., Lan, X., Fan, Y., Chang, J., Wang, G., Lu, C., & Xu, C. (2009). Hydrodynamics of gas–solid fluidized bed of disparately sized binary particles.
Chemical Engineering Science,
64(20), 4302-4316.
https://doi.org/10.1016/j.ces.2009.07.003
Güleç, F., Meredith, W., Sun, C. G., & Snape, C. E. (2019). A novel approach to CO
2 capture in fluid catalytic cracking-chemical looping combustion.
Fuel,
244, 140-150.
https://doi.org/10.1016/j.fuel.2019.01.168
Güleç, F., Meredith, W., & Snape, C. E. (2020a). Progress in the CO
2 capture technologies for fluid catalytic cracking (FCC) units—a review.
Frontiers in Energy Research,
8, 62.
https://doi.org/10.3389/fenrg.2020.00062
Güleç, F., Meredith, W., Sun, C. G., & Snape, C. E. (2020b). Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts.
Chemical Engineering Journal,
389, 124492.
https://doi.org/10.1016/j.cej.2020.124492
Güleç, F., Erdogan, A., Clough, P. T., & Lester, E. (2021). Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion.
Fuel Processing Technology,
223, 106998.
https://doi.org/10.1016/j.fuproc.2021.106998
Güleç, F., & Okolie, J. A. (2023). Decarbonising bioenergy through biomass utilisation in chemical looping combustion and gasification: a review. Environmental Chemistry Letters, 1-27. https://doi.org/10.1007/s10311-023-01656-5
Güleç, F., Meredith, W., & Snape, C. E. (2023a). CO
2 capture from fluid catalytic crackers via chemical looping combustion: Regeneration of coked catalysts with oxygen carriers.
Journal of the Energy Institute, 101187.
https://doi.org/10.1016/j.joei.2023.101187
Güleç, F., Okolie, J. A., Clough, P. T., Erdogan, A., Meredith, W., & Snape, C. E. (2023b). Low-temperature chemical looping oxidation of hydrogen for space heating.
Journal of the Energy Institute, 110, 101355.
https://doi.org/10.1016/j.joei.2023.101355
Güleç, F., Okolie, J. A., & Erdogan, A. (2023c). Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion–A novel approach for CO
2 capture.
Energy, 284, 128663.
https://doi.org/10.1016/j.energy.2023.128663
Hashim, M. Y., Abdelmotalib, H. M., Kim, J. S., Ko, D. G., & Im, I. T. (2020). A numerical study on gas-to-particle and particle-to-particle heat transfer in a conical fluidized bed reactor.
Journal of Mechanical Science and Technology,
34, 2391-2402.
https://doi.org/10.1007/s12206-020-0516-6
Jones, D. S., & Pujadó, P. P. (2006). Handbook of petroleum processing. Springer Science & Business Media.
Kamer, M., Erdoğan, A., Tacgun, E., Sonmez, K., Kaya, A., Aksoy, I., & Canbazoglu, S. (2018). A performance analysis on pressure loss and airflow diffusion in a chamber with perforated V-profile diffuser designed for air handling units (AHUs).
Journal of Applied Fluid Mechanics,
11(4), 1089-1100.
https://doi.org/10.29252/jafm.11.04.27699
Karabulut, K. (2023a). Heat transfer increment study taking into consideration fin lengths for CuO-water nanofluid in cross flow-impinging jet flow channels.
Thermal Science, (00), 35-35.
https://doi.org/10.2298/TSCI221203035K
Karabulut, K. (2023b). Investigation of heat transfer improvements of graphene oxide-water and diamond-water nanofluids in cross-flow-impinging jet flow channels having fin.
Isı Bilimi ve Tekniği Dergisi, 43(1), 11-30.
https://doi.org/10.47480/isibted.1290668
Khan, M., Hussain, M., Mansourpour, Z., Mostoufi, N., Ghasem, N., & Abdullah, E. (2014). CFD simulation of fluidized bed reactors for polyolefin production–A review.
Journal of Industrial and Engineering Chemistry,
20(6), 3919-3946.
https://doi.org/10.1016/j.jiec.2014.01.044
Li, P., Lan, X., Xu, C., Wang, G., Lu, C., & Gao, J. (2009). Drag models for simulating gas–solid flow in the turbulent fluidization of FCC particles.
Particuology,
7(4), 269-277.
https://doi.org/10.1016/j.partic.2009.03.010
Li, S., & Shen, Y. (2022). Numerical simulation of multiphase flow in a full coal-direct chemical looping combustion process.
Chemical Engineering Science,
248, 117233.
https://doi.org/10.1016/j.ces.2021.117233
Lu, F., Wei, K., Wang, M., Li, M., & Bao, H. (2023). Oil film deposition characteristics and judgment of lubrication effect of splash lubricated gears.
Journal of Mechanical Science and Technology, 1-11.
https://doi.org/10.1007/s12206-023-0415-8
Miracca, I., & Butler, D. (2015). CO2 capture from a fluid catalytic cracking unit: technical/economical evaluation. Carbon Dioxide Capture for Storage in Deep Geologic Formations, eds KF Gerdes.(Gerdes: CPL Press), 67-81.
Pourahmadi, S., & Talebi, S. (2020). Hydrodynamic simulation of two-phase flow in an industrial electrowinning cell with new scheme.
Journal of Applied Fluid Mechanics,
14(1), 243-257.
https://doi.org/10.47176/jafm.14.01.31207
Schwarz, M. P., & Lee, J. (2007). Reactive CFD simulation of an FCC regenerator.
Asia‐Pacific Journal of Chemical Engineering,
2(5), 347-354.
https://doi.org/10.1002/apj.64
Syamlal, M., Rogers, W., & O’Brien, T. (1993). MFIX documentation: Volume 1, theory guide.
National Technical Information Service, Springfield, VA.
https://doi.org/10.2172/656644
Taghipour, F., Ellis, N., & Wong, C. (2005). Experimental and computational study of gas–solid fluidized bed hydrodynamics.
Chemical Engineering Science,
60(24), 6857-6867.
https://doi.org/10.1016/j.ces.2005.05.044
Tang, G., Silaen, A., Wu, B., Fu, D., Agnello-Dean, D., Wilson, J., . . . Zhou, C. Q. (2017a). Numerical study of a fluid catalytic cracking regenerator hydrodynamics.
Powder Technology,
305, 662-672.
https://doi.org/10.1016/j.powtec.2016.09.082
Tang, G., Silaen, A. K., Wu, B., Fu, D., Agnello-Dean, D., Wilson, J., . . . Zhou, C. Q. (2017b). Numerical simulation and optimization of an industrial fluid catalytic cracking regenerator.
Applied Thermal Engineering,
112, 750-760.
https://doi.org/10.1016/j.applthermaleng.2016.10.060
Yang, Z., Zhang, Y., Liu, T., & Oloruntoba, A. (2021a). MP-PIC simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial FCC regenerator. Part II: Effects on regenerator performance.
Chemical Engineering Journal,
421, 129694.
https://doi.org/10.1016/j.cej.2021.129694
Yang, Z., Zhang, Y., Oloruntoba, A., & Yue, J. (2021b). MP-PIC simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial FCC regenerator. Part I: Effects on hydrodynamics.
Chemical Engineering Journal,
412, 128634.
https://doi.org/10.1016/j.cej.2021.128634
Zhang, S., Liu, N., Pan, Y., Wang, W., Li, Y., & Zhu, Y. (2021). Three-dimensional modelling of two-phase flow and transport in a pilot centrifugal spray dryer.
Chemical Physics Letters,
765, 138309.
https://doi.org/10.1016/j.cplett.2020.138309
Zimmermann, S., & Taghipour, F. (2005). CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors.
Industrial & engineering chemistry research,
44(26), 9818-9827.
https://doi.org/10.1021/ie050490+