Bai, L., Zhou, L., Han, C., Zhu, Y., & Shi, W. (2019). Numerical study of pressure fluctuation and unsteady flow in a centrifugal pump.
Processes,
7(6), 354.
https://doi.org/10.3390/pr7060354
Cai, X., Zhou, S. P., & Li, S. (2016, May). Study on the influence of back blade shape on the wear characteristics of centrifugal slurry pump. IOP Conference Series: Materials Science and Engineering. IOP Publishing. https://10.1088/1757-899X/129/1/012058.
Chandel, S., Singh, S. N., & Seshadri, V. (2012). Experimental study of erosion wear in a centrifugal slurry pump using coriolis wear test rig.
Particulate Science and Technology,
30(2), 179-195.
https://doi.org/10.1080/02726351.2010.523926.
Cornejo MacEda, G. Y., Li, Y., Lusseyran, F., MorzyĆski, M., & Noack, B. R. (2021). Stabilization of the fluidic pinball with gradient-enriched machine learning control. Journal of Fluid Mechanics, 917, A42. https://doi.org/10.1017/jfm.2021.301
Das, G., Sinha, A. N., Mishra, S. K., & Bhattacharya, D. K. (1999). Failure analysis of counter shafts of a centrifugal pump. Engineering Failure Analysis, 6(4), 267-276. https://doi.org/ 10.1016/S1350-6307(98)00037-5.
Demeneghi, G., Rodgers, K., Su, C. H., Medders, W. M., Gorti, S., & Wilkerson, R. (2022). Root cause analysis of premature simulated life cycle failure of friction stir welded aluminum 2219.
Engineering Failure Analysis,
134, 106059.
https://doi.org/10.1016/j.engfailanal.2022.106059
El-Emam, M. A., Shi, W., & Zhou, L. (2019). CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter.
Advanced Powder Technology,
30(11), 2686-2702.
https://doi.org/10.1016/j.apt.2019.08.015.
Engin, T., Gur, M., & Calli, I. (2001).
Slurry and tip clearance effects on the performance of an open impeller centrifugal pump. Handbook of Powder Technology. Elsevier Science BV.
https://doi.org/10.1016/S0167-3785(01)80052-X
Fan, D., Zhang, B., Zhou, Y., & Noack, B. R. (2020). Optimization and sensitivity analysis of active drag reduction of a square-back Ahmed body using machine learning control. Physics of Fluids, 32(12), 125117. https://doi.org/10.1063/5.0033156
Feller, H. G., & Kharrazi, Y. (1984). Cavitation erosion of metals and alloys.
Wear,
93(3), 249-260.
https://doi.org/10.1016/0043-1648(84)90199-6.
Gomez-Flores, A., Heyes, G. W., Ilyas, S., & Kim, H. (2022). Effects of artificial impeller blade wear on bubble–particle interactions using CFD (k–ε and LES), PIV, and 3D printing.
Minerals Engineering,
186, 107766.
https://doi.org/10.1016/j.mineng.2022.107766.
Huang, S., Huang, J., Guo, J., & Mo, Y. (2019). Study on wear properties of the flow parts in a centrifugal pump based on EDEM–fluent coupling.
Processes,
7(7), 431.
https://doi.org/10.3390/pr7070431.
Moghimi, P., & Rafee, R. (2018). Numerical and experimental investigations on aerodynamic behavior of the Ahmed body model with different diffuser angles. Journal of Applied Fluid Mechanics, 11(4), 1101-1113. https://doi.org/10.29252/JAFM.11.04.27923.
Mortazavi, F., Riasi, A., & Nourbakhsh, A. (2017). Numerical investigation of back vane design and its impact on pump performance.
Journal of Fluids Engineering,
139(12), 121104.
https://doi.org/10.1115/1.4037281
Pagalthivarthi, K. V., Gupta, P. K., Tyagi, V., & Ravi, M. R. (2011). CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows. The Journal of Computational Multiphase Flows, 3(4), 225-245. https://doi.org/10.1260/1757-482X.3.4.225.
Peng, G., Huang, X., Zhou, L., Zhou, G., & Zhou, H. (2020). Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump.
Engineering Failure Analysis,
114, 104602.
https://doi.org/10.1016/j.engfailanal.2020.104602.
Pirouzpanah, S., Patil, A., Chen, Y., & Morrison, G. (2019). Predictive erosion model for mixed flow centrifugal pump.
Journal of Energy Resources Technology,
141(9), 092001.
https://doi.org/10.1115/1.4043135.
Rajani, B. N., Kandasamy, A., & Majumdar, S. (2012). On the reliability of eddy viscosity based turbulence models in predicting turbulent flow past a circular cylinder using URANS approach.
Journal of Applied Fluid Mechanics, 5.
http://doi.org/10.36884/jafm.5.01.11959
Ren, K., Chen, Y., Gao, C., & Zhang, W. (2020). Adaptive control of transonic buffet flows over an airfoil.
Physics of Fluids,
32(9), 096106.
https://doi.org/10.1063/5.0020496
Shah, S. N., & Jain, S. (2008). Coiled tubing erosion during hydraulic fracturing slurry flow.
Wear,
264(3-4), 279-290.
https://doi.org/10.1016/j.wear.2007.03.016.
Sharma, S., & Gandhi, B. K. (2022). Experimental investigation on rotating domain wear of hydrodynamic machine due to particulate flow.
Powder Technology,
410, 117884.
https://doi.org/10.1016/J.POWTEC.2022.117884.
Song, X., Yao, R., Shen, Y., Bi, H., Zhang, Y., Du, L., & Wang, Z. (2021). Numerical prediction of erosion based on the solid-liquid two-phase flow in a double-suction centrifugal pump.
Journal of Marine Science and Engineering,
9(8), 836.
https://doi.org/10.3390/JMSE9080836.
Walker, C. I., & Robbie, P. (2013). Comparison of some laboratory wear tests and field wear in slurry pumps.
Wear,
302(1-2), 1026-1034.
https://doi.org/10.1016/j.wear.2012.11.053.
Wang, Y., He, T., Ding, Q., Gao, P., Tao, R., & Zhu, Z. (2022a). Analysis of internal flow and wear characteristics of binary mixture particles in centrifugal pump based on CFD-DEM.
Processes,
10(4), 681.
https://doi.org/10.3390/PR10040681.
Wang, Y., Wang, X., Chen, J., Li, G., Liu, H., & Xiong, W. (2022b). An experimental insight into dynamic characteristics and wear of centrifugal pump handling multi-size particulate slurry.
Engineering Failure Analysis,
138, 106303.
https://doi.org/10.1016/J.ENGFAILANAL.2022.106303.
Zhang, J., Kang, J., Fan, J., & Gao, J. (2016). Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry.
Journal of Natural Gas Science and Engineering,
32, 334-346.
https://doi.org/10.1080/02726351.2010.523926.
Zhou, L., Wang, W., Hang, J., Shi, W., Yan, H., & Zhu, Y. (2020). Numerical investigation of a high-speed electrical submersible pump with different end clearances.
Water,
12(4), 1116.
https://doi.org/10.3390/w12041116