Al-kayiem, H. H., Bhayo, B. A., & Assadi, M. (2016). Comparative critique on the design parameters and their effect on the performance of S-rotors.
Renewable Energy, 99, 1306–1317.
https://doi.org/10.1016/j.renene.2016.07.015
Alom, N., & Saha, U. K. (2019a). Evolution and progress in the development of savonius wind turbine rotor blade profiles and shapes.
Journal of Solar Energy Engineering,
141(3), 030801.
https://doi.org/10.1115/1.4041848
Alom, N., & Saha, U. K. (2019b). Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation.
Energy Conversion and Management, 186, 267–277.
https://doi.org/10.1016/j.enconman.2019.02.058
Altan B. D., & Gungor, A. (2022). Examination of the effect of triangular plate on the performance of reverse rotating dual Savonius wind turbines.
Processes, 10.22378
. https:// doi.org / 10.3390/pr10112278.
Ashwindran, S. N., Azizudin, A. A., & Oumer, A. N. (2020). A moment coefficient computational study of parametric drag driven wind turbine at moderate tip speed ratios.
Australian Journal of Mechanical Engineering.
20(2), 433-447. https://doi.org/10.1080/14484846.2020.1714364
Bach, G. (1931). Untersuchungen uber savonius rotoren und verwandte stromungsmaschinen. Forschung Auf Dem Gebiet Des Ingenieurwesens A, 2(6), 218–231.
Banerjee, A., Roy, S., Mukherjee, P., & Saha, U. K. (2014). Unsteady flow analysis around an elliptic bladed Savonius style wind turbine Gas Turbine India Conference. American Society of Mechanical Engineers.
Bekhti, A., Maizi, M., Guerri, O., Laazab, S., Bouzidi, S. C., & Boumerdassi, K. (2018, November). Numerical analysis of dynamic stall on wind turbine airfoils International Conference on Wind Energy and Applications in Algeria. IEEE.
Bekhti, A., Maizi, M., Tata, M., & Laazab, S. (2019, November). Numerical Investigation of Turbulent Flow over a Vertical axis Wind Turbine 7th International Renewable and Sustainable Energy Conference. IEEE.
Benesh, A. H. (1988). Wind turbine system using a vertical axis Savonius type rotor. U.S. Patent No: US5494407A.
Bhayo, B. A., & Al-kayiem, H. H. (2017). Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system.
Energy, 138, 752–763.
https://doi.org/10.1016/j.energy.2017.07.128
Chen, L., Chen, J., & Zhang, Z. (2018). Review of the savonius rotor's blade profile and its performance.
Journal of Renewable and Sustainable Energy,
10, 013306.
https://doi.org/10.1063/1.5012024
Driss, Z., Mlayeh, O., Driss, D., Maaloul, M., & Abid, M. S. (2014). Numerical simulation and experimental validation of the turbulent flow around a small incurved savonius wind rotor.
Energy,
74, 506–517.
https://doi.org/10.1016/j.energy.2014.07.016
Duan, Z., Jia, F., & Wang, Z. J. (2020).
Sliding mesh and arbitrary periodic interface approaches for the high order FR/CPR method. AIAA Scitech 2020 Forum. Orlando, FL.
https://doi.org/10.2514/6.2020-0086
Dürrwächter, J., Kurz, M., Kopper, P., Kempf, D., Munz, C. D., & Beck, A. (2021). An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes.
Computers & Fluids,
217, 104825,
https://doi.org/10.1016/j.compfluid.2020.104825.
Ebrahimpour, M., Shafaghat, R., Alamian, R., & Shadloo, M. S. (2019). Numerical inverstigation of the Savonius vertical axis wind turbine and evaluation of the effect of the overlap parameter in both horizontal and vertical directions on its performance.
Symmetry,
11(6), 821.
https://doi.org/10.3390/sym11060821
Eecen, P. J., & Verhoef, J. P. (2007). EWTW Meteorological Database Description. ECN-E—07-041, ECN Windenergy, Netherlands
El-Askary, W. A., Saad, A. S., AbdelSalam, A. M., & Sakr, I. M. (2018). Investigating the performance of a twisted modified Savonius rotor.
Journal of Wind Engineering & Industrial Aerodynamics,
182, 344–355.
https://doi.org/10.1016/j.jweia.2018.10.009
Etemadeasl, V., Esmaelnajad, R., Farzaneh, B. & Jafari, M. (2021). Application of counter rotating rotors for improving performance of savonius turbines.
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,
45, 473–
485. https://doi.org/10.1007/s40997-020-00410-4
Guerri, O., Hamdouni A., & Sakout, A. (2008). Numerical simulation of the flow around oscillating wind turbine airfoils. Part 1: Forced oscillating airfoil.
International Journal of Multiphysics, 2(4).
https://doi.org/10.1260/1750-9548.2.4.367
Im, H., & Kim, B. (2022). Power performance analysis based on Savonius wind turbine blade design and layout optimization through rotor wake flow analysis.
Energies,
15, 9500
. https://doi.org / 10.3390 / en15249500
Johannes, S. S. (1929). Rotor adapted to be driven by wind or flowing water. U. S. p. N. 1697574.
Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2008). Experimental investigations on the effect of overlap ratio and blade edge conditions on the performance of conventional savonius rotor.
Wind Engineering,
32 (2), 163–178.
https://doi.org/10.1260/030952408784815826
Meziane, M., Essadiqi, E., Faqir, M., & Ghanameh, M. F. (2019). CFD study of unsteady flow through Savonius wind turbine clusters.
International Journal of Renewable Energy Research,
9(2),
657–
666. https://doi.org/10.20508/ijrer.v9i2.8973.g7635
Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2011). Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade.
Energy Conversion and Management,
52(1), 236–242.
https://doi.org/10.1016/j.enconman.2010.06.070
Patel, U. K., Alom, N., & Saha, U. K. (2023). Aerodynamic analysis of a 2-stage elliptical-bladed Savonius wind rotor: Numerical simulation and experimental validation.
International Journal of Green Energy.
https://doi.org/10.1080 / 15435075.2023 – 2194975
Rahai, H. R. (2005). Development of optimum design configuration and performance for vertical axis wind turbine. Feasibility Analysis and Final EISG Report; California Energy Commission: Sacramento, CA, USA.
Roy, S., & Saha, U. K. (2013). Review on the numerical investigation into the design and development of Savonius wind rotors.
Renewable Sustainable Energy Review,
2, 73–83.
https://doi.org/10.1016/j.rser.2013.03.060
Saha, U. K., Thotla, S., & Maity, D. (2008). Optimum design configuration of Savonius rotor through wind tunnel experiments.
Journal of Wind Engineering and Industrial Aerodynamics,
96(8), 1359–1375.
https://doi.org/10.1016/j.jweia.2008.03.005
Shaheen, M., El-Sayed, M., & Abdallah, S. (2015). Numerical study of two bucket Savonius wind turbine cluster.
Journal of Wind Engineering and Industrial Aerodynamics, 137, 78–89.
https://doi.org/10.1016/j.jweia.2014.12.002.
Shashikumar, C. M., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021). Experimental and numerical investigation of novel V-shaped rotor for hydropower utilisations.
Ocean Engineering, 224, 108689.
https://doi.org/10.1016/j.oceaneng.2021.108689.
Sun, X., Luo, D., Huang, D., & Wu, G. (2021). Numerical study on coupling effects amoung multiple Savonius turbines.
Journal of Renewable and Sustainable Energy, 4, 053107.
https://doi.org/10.1063/1.4754438
Tata, M., Smaili, A., & Masson, C. (2018). Effect of grid topology on numerical simulations of flow fields around wind turbine nacelle anemometer.
Journal of Applied Fluid Mechanics, 11(6), 1569–1578.
https://doi.org/10.29252/jafm.11.06.28925