Alkam, M. K., & Al-Nimr, M. A. (1999). Solar collectors with tubes partially filled with porous substrates. ASME.
Journal of Solar Energy Engineering,
121(1), 20–24.
https://doi.org/10.1115/1.2888137
Anuar, F. S., Abdi, I. A., Odabaee, M., Hooman, K. (2018b). Experimental study of fluid flow behaviour and pressure drop in channels partially filled with metal foams.
Experimental Thermal and Fluid Science, 99, 117–128.
https://doi.org/10.1016/j.expthermflusci.2018.07.032
Bidar, B., Shahraki, F., & Mohebbi-Kalhori, D. (2016). 3D numerical modelling of convective heat transfer through two-sided vertical channel symmetrically filled with metal foams.
Periodica Polytechnica Mechanical Engineering,
60(4), 193–202.
https://doi.org/10.3311/PPme.8511
Ejlali, A., Ejlali, A., Hooman, K., & Gurgenci, H. (2009). Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems.
International Communications in Heat and Mass Transfer,
36(7), 674–679.
https://doi.org/10.1016/j.icheatmasstransfer.2009.03.001
Hamadouche, A., Nebbali, R., Benahmed, H., Kouidri, A., & Bousri, A. (2016). Experimental investigation of convective heat transfer in an open-cell aluminum foams.
Experimental Thermal and Fluid Science,
71, 86–94.
https://doi.org/10.1016/j.expthermflusci.2015.10.009
Han, X. H., Wang, Q., Park, Y. G., T’Joen, C., Sommers, A., & Jacobi, A. (2012). A review of metal foam and metal matrix composites for heat exchangers and heat sinks. In
Heat Transfer Engineering, 33(12), 991–1009.
https://doi.org/10.1080/01457632.2012.659613
Jadhav, P. H., G, T., Gnanasekaran, N., & Mobedi, M. (2022). Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection.
International Journal of Heat and Mass Transfer,
182.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121911
Jadhav, P. H., Nagarajan, G., & Perumal, D. A. (2021). Conjugate heat transfer study comprising the effect of thermal conductivity and irreversibility in a pipe filled with metallic foams.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
57(6), 911–930.
https://doi.org/10.1007/s00231-020-03000-x
Kamath, P. M., Balaji, C., & Venkateshan, S. P. (2011). Experimental investigation of flow assisted mixed convection in high porosity foams in vertical channels.
International Journal of Heat and Mass Transfer,
54(25–26), 5231–5241.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.020
Kotresha, B., & Gnanasekaran, N. (2020). Numerical simulations of fluid flow and heat transfer through aluminum and copper metal foam heat exchanger–a comparative study.
Heat Transfer Engineering,
41(6–7), 637–649.
https://doi.org/10.1080/01457632.2018.1546969
Kouidri, A., & Madani, B. (2016). Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence.
Mechanics of Materials,
99, 79–87.
https://doi.org/10.1016/j.mechmat.2016.05.007
Kuznetsov, A. V. (1996). Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Applied Scientific Research, 56.
Li, W. Q., Li, Y. X., Yang, T. H., Zhang, T. Y., & Qin, F. (2023). Experimental investigation on passive cooling, thermal storage and thermoelectric harvest with heat pipe-assisted PCM-embedded metal foam.
International Journal of Heat and Mass Transfer,
201, 123651.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123651
Mancin, S., Zilio, C., Rossetto, L., & Cavallini, A. (2010).
Experimental and analytical study of heat transfer and fluid flow through Aluminum foams. AIP Conference Proceedings, American Institute of Physics.
https://doi.org/10.1063/1.3453829
Mostafavi, M., & Meghdadi Isfahani, A. H. (2017). A new formulation for prediction of permeability of nano porous structures using lattice botzmann method.
Journal of Applied Fluid Mechanics,
10(2), 639–649.
https://doi.org/10.18869/acadpub.jafm.73.239.26702
Narasimmanaidu, S. R., Anuar, F. S., Sa’at, F. A. M., & Tokit, E. M. (2021). Numerical and experimental study of flow behaviours in porous structure of aluminium metal foam.
Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy,
8(3), 658-666.
https://doi.org/10.5109/4491842
Nield, D. A., & Bejan, A. (2005). Convection in porous media. 3rd ed., Berlin, Germany: Springer.
Shuja, S. Z., & Yilbas, B. S. (2007). Flow over rectangular porous block in a fixed width channel: Influence of porosity and aspect ratio.
International Journal of Computational Fluid Dynamics,
21(7–8), 297–305.
https://doi.org/10.1080/10618560701624518
Sung, H. J., Kim, S. Y., & Hyun, J. M. (1995). Forced convection from an isolated heat source in a channel with porous medium.
International Journal of Heat and Fluid Flow,
16(6), 527–535.
https://doi.org/10.1016/0142-727X(95)00032-L
T’Joen, C., De Jaeger, P., Huisseune, H., Van Herzeele, S., Vorst, N., & De Paepe, M. (2010). Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes.
International Journal of Heat and Mass Transfer,
53(15–16), 3262–3274.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.055
Trilok, G., Gnanasekaran, N., & Mobedi, M. (2021). Various trade-off scenarios in thermo-hydrodynamic performance of metal foams due to variations in their thickness and structural conditions.
Energies,
14(24).
https://doi.org/10.3390/en14248343
Wang, H., Ying, Q. F., Lichtfouse, E., & Huang, C. G. (2023). boiling heat transfer in copper foam bilayers in positive and inverse gradients of pore density.
Journal of Applied Fluid Mechanics,
16(5), 973–982.
https://doi.org/10.47176/jafm.16.05.1624
Xu, H. J., Qu, Z. G., Lu, T. J., He, Y. L., & Tao, W. Q. (2011). Thermal modeling of forced convection in a parallel-plate channel partially filled with metallic foams.
Journal of Heat Transfer,
133(9).
https://doi.org/10.1115/1.4004209