Ahn,
H.
S., Sinha, N., Zhang, M., Banerjee, D., Fang, S., & Baughman, R. H. (2006). Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests.
Journal of Heat Transfer,
128(12), 1335-1342.
https://doi.org/10.1115/1.2349511
Al-Chaabawi, M.
J. H., Abdollahi, A.,
& Najafi, M. (2023). Pool boiling heat flux of ammonia refrigerant in the presence of iron oxide nanoparticles: A molecular dynamics approach.
Engineering Analysis with Boundary Elements, 151, 387-393.
https://doi.org/10.1016/j.enganabound.2023.03.012
Alvariño, P. F., Simón, M. L. S., Guzella, M.
S., Paz, J. M. A., Jabardo, J. M. S., & Gómez, L. C. (2019). Experimental investigation of the CHF of HFE-7100 under pool boiling conditions on differently roughened surfaces.
International Journal of Heat and Mass Transfer,
139, 269–279.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.142
Benjamin, R. J., & Balakrishnan, A. R. (1997). Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties.
Experimental Thermal and Fluid Science, 15, 32–42.
https://doi.org/10.1016/S0894-1777(96)00168-9
Betz, A. R., Xu, J., Qiu, H., & Attinger, D. (2010). Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?.
Applied Physics Letters,
97, 141909.
https://doi.org/10.1063/1.3485057
Chu, K. H., Enright, R., & Wang, E. N. (2012). Structured surfaces for enhanced pool boiling heat transfer.
Applied Physics Letters,
100, 241603.
https://doi.org/10.1063/1.4724190
Chuang, T. J., Chang, Y. H., & Ferng, Y. M. (2019). Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling.
Applied Thermal Engineering,
163, 114358.
https://doi.org/10.1016/j.applthermaleng.2019.1143587u
Dai, B., Qi, H., Liu, S., Zhong, Z., Li, H., Song, M., Ma, M., & Sun, Z. (2019). Environmental and economical analyses of transcritical CO
2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China.
Energy Conversion and Management,198, 111317
. https://doi.org/10.1016/j.enconman.2019.01.119
Das, S., Kumar, D. S., & Bhaumik, S. (2016). Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface.
Applied Thermal Engineering,
96, 555–567.
https://doi.org/10.1016/j.applthermaleng.2015.11.117
Das, S., Saha, B., & Bhaumik, S. (2017a). Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure.
Applied Thermal Engineering,
113, 1345–1357.
https://doi.org/10.1016/j.applthermaleng.2016.11.135
Das, S., Saha, B., & Bhaumik, S. (2017b). Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure.
Experimental Thermal and Fluid Science, 81, 454–465.
https://doi.org/10.1016/j.expthermflusci.2016.09.009
Dharmendra, M., Suresh, S., Kumar, C. S. S., & Yang, Q. (2016). Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate.
Applied Thermal Engineering,
99, 61–71.
https://doi.org/10.1016/j.applthermaleng.2015.12.081
Fawzy, M. H., Ashour, M. M., & Halim, A. M. A. E. (1996). Effect of some operating variables on the characteristics of electrodeposited Ni-α-Al2O3 and Ni-TiO2 composites.
Transactions of the IMF,
74(2), 72-77.
https://doi.org/10.1080/00202967.1996.11871099
Fritz, W. (1935). Berechnung des maximale volume von dampfblasen. Physikalische Zeitschrift, 36, 379-384.
Gupta, S. K., & Misra, R. D. (2019). Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance.
Journal of Thermal Analysis and Calorimetry,
136, 1781–1793.
https://doi.org/10.1007/s10973-018-7805-7
Hu, Y., Li, H., He, Y., Liu, Z., & Zhao, Y. (2017). Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid.
International Journal of Heat and Mass Transfer,
107, 820–828.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.090
Jun, S., Kim, J., You, S. M., & Kim, H. Y. (2016). Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water.
International Journal of Heat and Mass Transfer, 103, 277–284.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.030
Kim, J. S., Girard, A., Jun, S., Lee, J., & You, S. M. (2018). Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces.
International Journal of Heat and Mass Transfer, 118, 802–811.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124
Kim, J., Seongchul, J., Laksnarain, R. & You, S. M. (2016). Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability.
International Journal of Heatand Mass Transfer, 101, 992–1002.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067
Kim, S. J., Bang, I. C., Buongiorno, J., & Hu, L. W. (2007). Surface wettability change during pool boiling of nanofluids and, its effect on critical heat flux.
International Journal of Heat and Mass Transfer,
50, 4105–4116.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
Kocamustafaogullari, G., & Ishii, M. (1983). Aireinterfacialeetdensite de sites de nucleation dans les systemes en ebullition.
International Journal of Heat and Mass Transfer, 26, 1377–1387.
https://doi.org/10.1016/S0017-9310(83)80069-6
Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., & You, S. M. (2010). Pool boiling characteristics of low concentration nanofluids.
International Journal of Heat and Mass Transfer,
53, 972–981.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018
Lu, M. C., Chen, R., Srinivasan, V., Carey, V. P., & Majumdar, A. (2011). Critical heat flux of pool boiling on Si nanowire array-coated surfaces.
International Journal of Heat and Mass Transfer, 54, 5359–5367.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.007
Mao, L., Zhou, W., Hu, X., Yu, H., Zhang, G., Zhang, L., & Fu, R. (2020). Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface.
International Journal of Thermal Sciences,
147, 106154.
https://doi.org/10.1016/j.ijthermalsci.2019.106154
Mogra, A., Pandey, P. K., & Gupta, K. K. (2021). Influence of surface wettability and selection of coating material for enhancement of heat transfer performance.
Materials Today: Proceedings,
44, 4433-4438.
https://doi.org/10.1016/j.matpr.2020.10.595
Mohammadi, N., Fadda, D., Choi, C. K., Lee, J., & You, S. M. (2018). Effects of surface wettability on pool boiling of water using super-polished silicon surfaces.
International Journal of Heat and Mass Transfer, 127, 1128–1137.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.122
Park, S. D., Lee, S. W., Kang, S., Kim, S. M., & Bang, I. C. (2012). Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments.
Nuclear Engineering and Design,
252, 184–191.
https://doi.org/10.1016/j.nucengdes.2012.07.016
Phan, H. T., Caney, N., Marty, P., Colasson, S., & Gavillet, J. (2009). Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism.
International Journal of Heat and Mass Transfer,
52, 5459–5471.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032
Rishi, A. M., Kandlikar, S. G., & Gupta, A. (2019). Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer.
International Journal of Heat and Mass Transfer,
132, 462–472.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.169
Saelim, N., Magaraphan, R., & Sreethawong, T. (2011). Preparation of sol–gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells.
Energy Conversion and Management,
52, 815–2818.
https://doi.org/10.1016/j.enconman.2011.02.016
Seo, H., Chu, J. H., Kwonb, S. Y., & Bang, I. C. (2015). Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72.
International Journal of Heat and Mass Transfer,
82, 490–502.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.019
Shah, Y., Kim, H. G., Choi, W. W., & Kim, S. M. (2023). Experimental pool boiling study on novel multistage cross-flow porous structure using FC-72 for high-heat-flux electronic applications.
International Journal of Heat and Mass Transfer, 213, 124270.
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124270
Shi, J., Jia, X., Feng, D., Chen, Z., & Dang, C. (2020). Wettability effect on pool boiling heat transfer using a multiscale copper foam surface.
International Journal of Heat and Mass Transfer,
146, 118726.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118726
Tang, Y., Tang, B., Li, Q., Qing, J., Lu, L., & Chen, K. (2013). Pool-boiling enhancement by novel metallic nanoporous surface.
Experimental Thermal and Fluid Science,
44, 194–198.
https://doi.org/10.1016/j.expthermflusci.2012.06.008
Wang, C. H., & Dhir, V. K. (1993). Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface.
Journal of Heat Transfer, 115(3), 659-669.
https://doi.org/10.1115/1.2910737
Wang, C. Y., JI, W. T., Zhao, C. Y., Chen, L., & Qua, W. (2023a). Experimental determination of the role of roughness and wettability on pool-boiling heat transfer of refrigerant.
International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2023.06.014
Wang, Y. Q., Luo, J. L., Heng, Y., Mo, D. C., & Lyu, S. S. (2018). Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure.
International Journal of Heat and Mass Transfer,
119, 333–342.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.080
Wang, Y., Wu, G., Xu, J., Chen, R., & Wang, H. (2023b). Effects of geometric arrangement on pool boiling heat exchange in the tubular bundle.
Nuclear Engineering and Design, 402, 112110.
https://doi.org/10.1016/j.nucengdes.2022.112110
Yim, K., Lee, J., Naccarato, B., & Kim, K. J. (2019). Surface wettability effect on nucleate pool boiling heat transfer with titanium oxide (TiO2) coated heating surface.
International Journal of Heat and Mass Transfer,
133, 352–358.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.075
Zuber, N. (1959).
Hydrodynamic aspects of boiling heat transfer. [thesis, United States Atomic Energy Commission], Technical Information Service.
https://doi.org/10.2172/4175511